This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "tools/segmented_sieve.hpp"
It can list all primes $p$ such that $L \leq p \leq R$. Also, it can list all prime factors of $n$ such that $L \leq n \leq R$.
(1) segmented_sieve<T> sieve(T K, T L, T R);
(2) segmented_sieve<T> sieve(T L, T R);
sieve(0, L, R)
.T sieve.lpf_max();
It returns $\max\left(\left\lfloor\sqrt{R}\right\rfloor, K\right)$.
T sieve.l();
It returns $L$.
T sieve.r();
It returns $R$.
struct {
segmented_sieve<T>::prime_iterable::iterator begin();
segmented_sieve<T>::prime_iterable::iterator end();
} sieve.prime_range(T l, T r);
It returns all primes $p$ such that $l \leq p \leq r$ in ascending order.
struct {
segmented_sieve<T>::prime_factor_iterable::iterator begin();
segmented_sieve<T>::prime_factor_iterable::iterator end();
} sieve.prime_factor_range(T n);
It returns all prime factors of $n$ in ascending order.
struct {
segmented_sieve<T>::distinct_prime_factor_iterable::iterator begin();
segmented_sieve<T>::distinct_prime_factor_iterable::iterator end();
} sieve.distinct_prime_factor_range(T n);
It returns all distinct prime factors of $n$ and the numbers of occurrences of them, in ascending order of primes.
For example, sieve.distinct_prime_factor_range(360)
returns $((2, 3), (3, 2), (5, 1))$ since $360 = 2^3 \times 3^2 \times 5^1$.
#ifndef TOOLS_SEGMENTED_SIEVE_HPP
#define TOOLS_SEGMENTED_SIEVE_HPP
#include <vector>
#include <cassert>
#include <algorithm>
#include <limits>
#include <numeric>
#include <cstddef>
#include <iterator>
#include <utility>
#include "tools/floor_sqrt.hpp"
#include "tools/chmin.hpp"
#include "tools/ceil.hpp"
namespace tools {
template <typename T>
class segmented_sieve {
private:
::std::vector<T> m_lpf;
::std::vector<::std::vector<T>> m_pf;
::std::vector<T> m_aux;
T m_l;
public:
segmented_sieve() = default;
segmented_sieve(const ::tools::segmented_sieve<T>&) = default;
segmented_sieve(::tools::segmented_sieve<T>&&) = default;
~segmented_sieve() = default;
::tools::segmented_sieve<T>& operator=(const ::tools::segmented_sieve<T>&) = default;
::tools::segmented_sieve<T>& operator=(::tools::segmented_sieve<T>&&) = default;
segmented_sieve(const T& k, const T& l, const T& r) {
assert(l <= r);
const T lpf_max = ::std::max(::tools::floor_sqrt(r), k);
this->m_lpf.resize(lpf_max + 1);
::std::fill(this->m_lpf.begin(), this->m_lpf.end(), ::std::numeric_limits<T>::max());
this->m_pf.resize(r - l + 1);
this->m_aux.resize(r - l + 1);
::std::iota(this->m_aux.begin(), this->m_aux.end(), l);
this->m_l = l;
for (T p = 2; p <= lpf_max; ++p) {
if (::tools::chmin(this->m_lpf[p], p)) {
for (T np = p * p; np <= lpf_max; np += p) {
::tools::chmin(this->m_lpf[np], p);
}
for (T p_q = p, np_q; (np_q = ::tools::ceil(l, p_q) * p_q) <= r; p_q *= p) {
for (; np_q <= r; np_q += p_q) {
if (lpf_max < this->m_aux[np_q - l]) {
this->m_pf[np_q - l].push_back(p);
this->m_aux[np_q - l] /= p;
}
}
}
}
}
for (T i = l; i <= r; ++i) {
if (lpf_max < this->m_aux[i - l]) {
this->m_pf[i - l].push_back(this->m_aux[i - l]);
this->m_aux[i - l] = 1;
}
}
}
segmented_sieve(const T& l, const T& r) :
segmented_sieve(0, l, r) {
}
T lpf_max() const {
return this->m_lpf.size() - 1;
}
T l() const {
return this->m_l;
}
T r() const {
return this->m_l + this->m_pf.size() - 1;
}
class prime_factor_iterable {
private:
const ::tools::segmented_sieve<T> *m_parent;
T m_n;
public:
class iterator {
private:
const prime_factor_iterable *m_parent;
bool m_large;
T m_i;
T n() const {
return this->m_parent->m_n;
}
public:
using difference_type = ::std::ptrdiff_t;
using value_type = T;
using reference = T&;
using pointer = T*;
using iterator_category = ::std::input_iterator_tag;
iterator() = default;
iterator(const iterator&) = default;
iterator(iterator&&) = default;
~iterator() = default;
iterator& operator=(const iterator&) = default;
iterator& operator=(iterator&&) = default;
iterator(prime_factor_iterable const * const parent, const bool large, const T& i) :
m_parent(parent), m_large(large), m_i(i) {
}
T operator*() const {
if (this->m_large) {
return this->m_parent->m_parent->m_pf[this->n() - this->m_parent->m_parent->l()][this->m_i];
} else {
return this->m_parent->m_parent->m_lpf[this->m_i];
}
}
iterator& operator++() {
if (this->m_large) {
++this->m_i;
if (this->m_i == T(this->m_parent->m_parent->m_pf[this->n() - this->m_parent->m_parent->l()].size())) {
this->m_large = false;
this->m_i = this->m_parent->m_parent->m_aux[this->n() - this->m_parent->m_parent->l()];
}
} else {
this->m_i /= this->m_parent->m_parent->m_lpf[this->m_i];
}
return *this;
}
iterator operator++(int) {
const iterator self = *this;
++*this;
return self;
}
friend bool operator==(const iterator& lhs, const iterator& rhs) {
return lhs.m_large == rhs.m_large && (!lhs.m_large || lhs.n() == rhs.n()) && lhs.m_i == rhs.m_i;
}
friend bool operator!=(const iterator& lhs, const iterator& rhs) {
return !(lhs == rhs);
}
};
prime_factor_iterable(::tools::segmented_sieve<T> const * const parent, const T& n) :
m_parent(parent), m_n(n) {
}
iterator begin() const {
if (this->m_n <= this->m_parent->lpf_max()) {
return iterator(this, false, this->m_n);
} else {
return iterator(this, true, 0);
}
}
iterator end() const {
return iterator(this, false, 1);
}
};
class distinct_prime_factor_iterable {
private:
const ::tools::segmented_sieve<T> *m_parent;
T m_n;
public:
class iterator {
private:
const distinct_prime_factor_iterable *m_parent;
bool m_large;
T m_i;
::std::pair<T, T> m_value;
T n() const {
return this->m_parent->m_n;
}
void next() {
const ::std::vector<T>& lpf = this->m_parent->m_parent->m_lpf;
if (this->m_large) {
const ::std::vector<T>& pf = this->m_parent->m_parent->m_pf[this->m_parent->m_n - this->m_parent->m_parent->l()];
this->m_value.first = pf[this->m_i];
this->m_value.second = 0;
for (; this->m_i < T(pf.size()) && pf[this->m_i] == this->m_value.first; ++this->m_i) {
++this->m_value.second;
}
if (this->m_i == T(pf.size())) {
this->m_large = false;
this->m_i = this->m_parent->m_parent->m_aux[this->m_parent->m_n - this->m_parent->m_parent->l()];
for (; lpf[this->m_i] == this->m_value.first; this->m_i /= lpf[this->m_i]) {
++this->m_value.second;
}
}
} else {
if (this->m_i == 1) {
this->m_value.first = ::std::numeric_limits<T>::max();
this->m_value.second = 0;
} else {
this->m_value.first = lpf[this->m_i];
this->m_value.second = 0;
for (; lpf[this->m_i] == this->m_value.first; this->m_i /= lpf[this->m_i]) {
++this->m_value.second;
}
}
}
}
public:
using difference_type = ::std::ptrdiff_t;
using value_type = ::std::pair<T, T>;
using reference = ::std::pair<T, T>&;
using pointer = ::std::pair<T, T>*;
using iterator_category = ::std::input_iterator_tag;
iterator() = default;
iterator(const iterator&) = default;
iterator(iterator&&) = default;
~iterator() = default;
iterator& operator=(const iterator&) = default;
iterator& operator=(iterator&&) = default;
iterator(distinct_prime_factor_iterable const * const parent, const bool large, const T& i) :
m_parent(parent), m_large(large), m_i(i) {
this->next();
}
::std::pair<T, T> operator*() const {
return this->m_value;
}
iterator& operator++() {
this->next();
return *this;
}
iterator operator++(int) {
const iterator self = *this;
++*this;
return self;
}
friend bool operator==(const iterator& lhs, const iterator& rhs) {
return lhs.n() == rhs.n() && lhs.m_value.first == rhs.m_value.first;
}
friend bool operator!=(const iterator& lhs, const iterator& rhs) {
return !(lhs == rhs);
}
};
distinct_prime_factor_iterable(::tools::segmented_sieve<T> const * const parent, const T& n) :
m_parent(parent), m_n(n) {
}
iterator begin() const {
if (this->m_n <= this->m_parent->lpf_max()) {
return iterator(this, false, this->m_n);
} else {
return iterator(this, true, 0);
}
}
iterator end() const {
return iterator(this, false, 1);
}
};
class prime_iterable {
private:
const ::tools::segmented_sieve<T> *m_parent;
T m_lb;
T m_ub;
public:
class iterator {
private:
const prime_iterable *m_parent;
T m_i;
void next() {
++this->m_i;
for (; this->m_i <= this->m_parent->m_ub && (
(this->m_i <= this->m_parent->m_parent->lpf_max() && this->m_parent->m_parent->m_lpf[this->m_i] != this->m_i)
|| (this->m_parent->m_parent->lpf_max() < this->m_i && this->m_parent->m_parent->m_pf[this->m_i - this->m_parent->m_parent->l()][0] != this->m_i)
); ++this->m_i);
}
public:
using difference_type = ::std::ptrdiff_t;
using value_type = T;
using reference = T&;
using pointer = T*;
using iterator_category = ::std::input_iterator_tag;
iterator() = default;
iterator(const iterator&) = default;
iterator(iterator&&) = default;
~iterator() = default;
iterator& operator=(const iterator&) = default;
iterator& operator=(iterator&&) = default;
iterator(prime_iterable const * const parent, const T& i) :
m_parent(parent), m_i(i) {
this->next();
}
T operator*() const {
return this->m_i;
}
iterator& operator++() {
this->next();
return *this;
}
iterator operator++(int) {
const iterator self = *this;
++*this;
return self;
}
friend bool operator==(const iterator& lhs, const iterator& rhs) {
return lhs.m_i == rhs.m_i;
}
friend bool operator!=(const iterator& lhs, const iterator& rhs) {
return !(lhs == rhs);
}
};
prime_iterable(::tools::segmented_sieve<T> const * const parent, const T& lb, const T& ub) :
m_parent(parent), m_lb(lb), m_ub(ub) {
}
iterator begin() const {
return iterator(this, this->m_lb - 1);
}
iterator end() const {
return iterator(this, this->m_ub);
}
};
prime_factor_iterable prime_factor_range(const T& n) const {
assert((1 <= n && n <= this->lpf_max()) || (this->l() <= n && n <= this->r()));
return prime_factor_iterable(this, n);
}
distinct_prime_factor_iterable distinct_prime_factor_range(const T& n) const {
assert((1 <= n && n <= this->lpf_max()) || (this->l() <= n && n <= this->r()));
return distinct_prime_factor_iterable(this, n);
}
prime_iterable prime_range(const T& lb, const T& ub) const {
assert(lb <= ub);
const bool is_in_small_sieve = 1 <= lb && ub <= this->lpf_max();
const bool is_in_large_sieve = this->l() <= lb && ub <= this->r();
assert(is_in_small_sieve || is_in_large_sieve);
return prime_iterable(this, lb, ub);
}
};
}
#endif
#line 1 "tools/segmented_sieve.hpp"
#include <vector>
#include <cassert>
#include <algorithm>
#include <limits>
#include <numeric>
#include <cstddef>
#include <iterator>
#include <utility>
#line 1 "tools/floor_sqrt.hpp"
#line 5 "tools/floor_sqrt.hpp"
namespace tools {
template <typename T>
T floor_sqrt(const T n) {
assert(n >= 0);
T ok = 0;
T ng;
for (ng = 1; ng <= n / ng; ng *= 2);
while (ng - ok > 1) {
const T mid = ok + (ng - ok) / 2;
if (mid <= n / mid) {
ok = mid;
} else {
ng = mid;
}
}
return ok;
}
}
#line 1 "tools/chmin.hpp"
#include <type_traits>
#line 6 "tools/chmin.hpp"
namespace tools {
template <typename M, typename N>
bool chmin(M& lhs, const N& rhs) {
bool updated;
if constexpr (::std::is_integral_v<M> && ::std::is_integral_v<N>) {
updated = ::std::cmp_less(rhs, lhs);
} else {
updated = rhs < lhs;
}
if (updated) lhs = rhs;
return updated;
}
}
#line 1 "tools/ceil.hpp"
#line 1 "tools/is_integral.hpp"
#line 5 "tools/is_integral.hpp"
namespace tools {
template <typename T>
struct is_integral : ::std::is_integral<T> {};
template <typename T>
inline constexpr bool is_integral_v = ::tools::is_integral<T>::value;
}
#line 1 "tools/is_unsigned.hpp"
#line 5 "tools/is_unsigned.hpp"
namespace tools {
template <typename T>
struct is_unsigned : ::std::is_unsigned<T> {};
template <typename T>
inline constexpr bool is_unsigned_v = ::tools::is_unsigned<T>::value;
}
#line 8 "tools/ceil.hpp"
namespace tools {
template <typename M, typename N> requires (
::tools::is_integral_v<M> && !::std::is_same_v<::std::remove_cv_t<M>, bool> &&
::tools::is_integral_v<N> && !::std::is_same_v<::std::remove_cv_t<N>, bool>)
constexpr ::std::common_type_t<M, N> ceil(const M x, const N y) noexcept {
assert(y != 0);
if (y >= 0) {
if (x > 0) {
return (x - 1) / y + 1;
} else {
if constexpr (::tools::is_unsigned_v<::std::common_type_t<M, N>>) {
return 0;
} else {
return x / y;
}
}
} else {
if (x >= 0) {
if constexpr (::tools::is_unsigned_v<::std::common_type_t<M, N>>) {
return 0;
} else {
return x / y;
}
} else {
return (x + 1) / y + 1;
}
}
}
}
#line 15 "tools/segmented_sieve.hpp"
namespace tools {
template <typename T>
class segmented_sieve {
private:
::std::vector<T> m_lpf;
::std::vector<::std::vector<T>> m_pf;
::std::vector<T> m_aux;
T m_l;
public:
segmented_sieve() = default;
segmented_sieve(const ::tools::segmented_sieve<T>&) = default;
segmented_sieve(::tools::segmented_sieve<T>&&) = default;
~segmented_sieve() = default;
::tools::segmented_sieve<T>& operator=(const ::tools::segmented_sieve<T>&) = default;
::tools::segmented_sieve<T>& operator=(::tools::segmented_sieve<T>&&) = default;
segmented_sieve(const T& k, const T& l, const T& r) {
assert(l <= r);
const T lpf_max = ::std::max(::tools::floor_sqrt(r), k);
this->m_lpf.resize(lpf_max + 1);
::std::fill(this->m_lpf.begin(), this->m_lpf.end(), ::std::numeric_limits<T>::max());
this->m_pf.resize(r - l + 1);
this->m_aux.resize(r - l + 1);
::std::iota(this->m_aux.begin(), this->m_aux.end(), l);
this->m_l = l;
for (T p = 2; p <= lpf_max; ++p) {
if (::tools::chmin(this->m_lpf[p], p)) {
for (T np = p * p; np <= lpf_max; np += p) {
::tools::chmin(this->m_lpf[np], p);
}
for (T p_q = p, np_q; (np_q = ::tools::ceil(l, p_q) * p_q) <= r; p_q *= p) {
for (; np_q <= r; np_q += p_q) {
if (lpf_max < this->m_aux[np_q - l]) {
this->m_pf[np_q - l].push_back(p);
this->m_aux[np_q - l] /= p;
}
}
}
}
}
for (T i = l; i <= r; ++i) {
if (lpf_max < this->m_aux[i - l]) {
this->m_pf[i - l].push_back(this->m_aux[i - l]);
this->m_aux[i - l] = 1;
}
}
}
segmented_sieve(const T& l, const T& r) :
segmented_sieve(0, l, r) {
}
T lpf_max() const {
return this->m_lpf.size() - 1;
}
T l() const {
return this->m_l;
}
T r() const {
return this->m_l + this->m_pf.size() - 1;
}
class prime_factor_iterable {
private:
const ::tools::segmented_sieve<T> *m_parent;
T m_n;
public:
class iterator {
private:
const prime_factor_iterable *m_parent;
bool m_large;
T m_i;
T n() const {
return this->m_parent->m_n;
}
public:
using difference_type = ::std::ptrdiff_t;
using value_type = T;
using reference = T&;
using pointer = T*;
using iterator_category = ::std::input_iterator_tag;
iterator() = default;
iterator(const iterator&) = default;
iterator(iterator&&) = default;
~iterator() = default;
iterator& operator=(const iterator&) = default;
iterator& operator=(iterator&&) = default;
iterator(prime_factor_iterable const * const parent, const bool large, const T& i) :
m_parent(parent), m_large(large), m_i(i) {
}
T operator*() const {
if (this->m_large) {
return this->m_parent->m_parent->m_pf[this->n() - this->m_parent->m_parent->l()][this->m_i];
} else {
return this->m_parent->m_parent->m_lpf[this->m_i];
}
}
iterator& operator++() {
if (this->m_large) {
++this->m_i;
if (this->m_i == T(this->m_parent->m_parent->m_pf[this->n() - this->m_parent->m_parent->l()].size())) {
this->m_large = false;
this->m_i = this->m_parent->m_parent->m_aux[this->n() - this->m_parent->m_parent->l()];
}
} else {
this->m_i /= this->m_parent->m_parent->m_lpf[this->m_i];
}
return *this;
}
iterator operator++(int) {
const iterator self = *this;
++*this;
return self;
}
friend bool operator==(const iterator& lhs, const iterator& rhs) {
return lhs.m_large == rhs.m_large && (!lhs.m_large || lhs.n() == rhs.n()) && lhs.m_i == rhs.m_i;
}
friend bool operator!=(const iterator& lhs, const iterator& rhs) {
return !(lhs == rhs);
}
};
prime_factor_iterable(::tools::segmented_sieve<T> const * const parent, const T& n) :
m_parent(parent), m_n(n) {
}
iterator begin() const {
if (this->m_n <= this->m_parent->lpf_max()) {
return iterator(this, false, this->m_n);
} else {
return iterator(this, true, 0);
}
}
iterator end() const {
return iterator(this, false, 1);
}
};
class distinct_prime_factor_iterable {
private:
const ::tools::segmented_sieve<T> *m_parent;
T m_n;
public:
class iterator {
private:
const distinct_prime_factor_iterable *m_parent;
bool m_large;
T m_i;
::std::pair<T, T> m_value;
T n() const {
return this->m_parent->m_n;
}
void next() {
const ::std::vector<T>& lpf = this->m_parent->m_parent->m_lpf;
if (this->m_large) {
const ::std::vector<T>& pf = this->m_parent->m_parent->m_pf[this->m_parent->m_n - this->m_parent->m_parent->l()];
this->m_value.first = pf[this->m_i];
this->m_value.second = 0;
for (; this->m_i < T(pf.size()) && pf[this->m_i] == this->m_value.first; ++this->m_i) {
++this->m_value.second;
}
if (this->m_i == T(pf.size())) {
this->m_large = false;
this->m_i = this->m_parent->m_parent->m_aux[this->m_parent->m_n - this->m_parent->m_parent->l()];
for (; lpf[this->m_i] == this->m_value.first; this->m_i /= lpf[this->m_i]) {
++this->m_value.second;
}
}
} else {
if (this->m_i == 1) {
this->m_value.first = ::std::numeric_limits<T>::max();
this->m_value.second = 0;
} else {
this->m_value.first = lpf[this->m_i];
this->m_value.second = 0;
for (; lpf[this->m_i] == this->m_value.first; this->m_i /= lpf[this->m_i]) {
++this->m_value.second;
}
}
}
}
public:
using difference_type = ::std::ptrdiff_t;
using value_type = ::std::pair<T, T>;
using reference = ::std::pair<T, T>&;
using pointer = ::std::pair<T, T>*;
using iterator_category = ::std::input_iterator_tag;
iterator() = default;
iterator(const iterator&) = default;
iterator(iterator&&) = default;
~iterator() = default;
iterator& operator=(const iterator&) = default;
iterator& operator=(iterator&&) = default;
iterator(distinct_prime_factor_iterable const * const parent, const bool large, const T& i) :
m_parent(parent), m_large(large), m_i(i) {
this->next();
}
::std::pair<T, T> operator*() const {
return this->m_value;
}
iterator& operator++() {
this->next();
return *this;
}
iterator operator++(int) {
const iterator self = *this;
++*this;
return self;
}
friend bool operator==(const iterator& lhs, const iterator& rhs) {
return lhs.n() == rhs.n() && lhs.m_value.first == rhs.m_value.first;
}
friend bool operator!=(const iterator& lhs, const iterator& rhs) {
return !(lhs == rhs);
}
};
distinct_prime_factor_iterable(::tools::segmented_sieve<T> const * const parent, const T& n) :
m_parent(parent), m_n(n) {
}
iterator begin() const {
if (this->m_n <= this->m_parent->lpf_max()) {
return iterator(this, false, this->m_n);
} else {
return iterator(this, true, 0);
}
}
iterator end() const {
return iterator(this, false, 1);
}
};
class prime_iterable {
private:
const ::tools::segmented_sieve<T> *m_parent;
T m_lb;
T m_ub;
public:
class iterator {
private:
const prime_iterable *m_parent;
T m_i;
void next() {
++this->m_i;
for (; this->m_i <= this->m_parent->m_ub && (
(this->m_i <= this->m_parent->m_parent->lpf_max() && this->m_parent->m_parent->m_lpf[this->m_i] != this->m_i)
|| (this->m_parent->m_parent->lpf_max() < this->m_i && this->m_parent->m_parent->m_pf[this->m_i - this->m_parent->m_parent->l()][0] != this->m_i)
); ++this->m_i);
}
public:
using difference_type = ::std::ptrdiff_t;
using value_type = T;
using reference = T&;
using pointer = T*;
using iterator_category = ::std::input_iterator_tag;
iterator() = default;
iterator(const iterator&) = default;
iterator(iterator&&) = default;
~iterator() = default;
iterator& operator=(const iterator&) = default;
iterator& operator=(iterator&&) = default;
iterator(prime_iterable const * const parent, const T& i) :
m_parent(parent), m_i(i) {
this->next();
}
T operator*() const {
return this->m_i;
}
iterator& operator++() {
this->next();
return *this;
}
iterator operator++(int) {
const iterator self = *this;
++*this;
return self;
}
friend bool operator==(const iterator& lhs, const iterator& rhs) {
return lhs.m_i == rhs.m_i;
}
friend bool operator!=(const iterator& lhs, const iterator& rhs) {
return !(lhs == rhs);
}
};
prime_iterable(::tools::segmented_sieve<T> const * const parent, const T& lb, const T& ub) :
m_parent(parent), m_lb(lb), m_ub(ub) {
}
iterator begin() const {
return iterator(this, this->m_lb - 1);
}
iterator end() const {
return iterator(this, this->m_ub);
}
};
prime_factor_iterable prime_factor_range(const T& n) const {
assert((1 <= n && n <= this->lpf_max()) || (this->l() <= n && n <= this->r()));
return prime_factor_iterable(this, n);
}
distinct_prime_factor_iterable distinct_prime_factor_range(const T& n) const {
assert((1 <= n && n <= this->lpf_max()) || (this->l() <= n && n <= this->r()));
return distinct_prime_factor_iterable(this, n);
}
prime_iterable prime_range(const T& lb, const T& ub) const {
assert(lb <= ub);
const bool is_in_small_sieve = 1 <= lb && ub <= this->lpf_max();
const bool is_in_large_sieve = this->l() <= lb && ub <= this->r();
assert(is_in_small_sieve || is_in_large_sieve);
return prime_iterable(this, lb, ub);
}
};
}