proconlib

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub anqooqie/proconlib

:warning: tests/segmented_sieve.test.cpp

Depends on

Code

// competitive-verifier: PROBLEM https://atcoder.jp/contests/abc227/tasks/abc227_g
// competitive-verifier: IGNORE

#include <iostream>
#include <unordered_map>
#include "atcoder/modint.hpp"
#include "tools/segmented_sieve.hpp"

using ll = long long;
using mint = atcoder::modint998244353;

int main() {
  std::cin.tie(nullptr);
  std::ios_base::sync_with_stdio(false);

  ll N, K;
  std::cin >> N >> K;

  std::unordered_map<ll, ll> nCk;
  if (K > 0) {
    tools::segmented_sieve<ll> sieve(K, N - K + 1, N);
    for (ll i = N - K + 1; i <= N; ++i) {
      for (const ll& p : sieve.prime_factor_range(i)) {
        ++nCk[p];
      }
    }

    for (ll i = 1; i <= K; ++i) {
      for (const ll& p : sieve.prime_factor_range(i)) {
        --nCk[p];
      }
    }
  }

  mint answer(1);
  for (const auto& [p, q] : nCk) {
    answer *= mint(q + 1);
  }
  std::cout << answer.val() << '\n';
  return 0;
}
#line 1 "tests/segmented_sieve.test.cpp"
// competitive-verifier: PROBLEM https://atcoder.jp/contests/abc227/tasks/abc227_g
// competitive-verifier: IGNORE

#include <iostream>
#include <unordered_map>
#line 1 "lib/ac-library/atcoder/modint.hpp"



#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

#line 1 "lib/ac-library/atcoder/internal_math.hpp"



#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned long long y = x * _m;
        return (unsigned int)(z - y + (z < y ? _m : 0));
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#line 1 "lib/ac-library/atcoder/internal_type_traits.hpp"



#line 7 "lib/ac-library/atcoder/internal_type_traits.hpp"

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


#line 14 "lib/ac-library/atcoder/modint.hpp"

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


#line 1 "tools/segmented_sieve.hpp"



#include <vector>
#line 6 "tools/segmented_sieve.hpp"
#include <algorithm>
#include <limits>
#line 9 "tools/segmented_sieve.hpp"
#include <cstddef>
#include <iterator>
#line 1 "tools/floor_sqrt.hpp"



#line 5 "tools/floor_sqrt.hpp"

namespace tools {

  template <typename T>
  T floor_sqrt(const T n) {
    assert(n >= 0);

    T ok = 0;
    T ng;
    for (ng = 1; ng <= n / ng; ng *= 2);

    while (ng - ok > 1) {
      const T mid = ok + (ng - ok) / 2;
      if (mid <= n / mid) {
        ok = mid;
      } else {
        ng = mid;
      }
    }

    return ok;
  }
}


#line 1 "tools/chmin.hpp"



#line 6 "tools/chmin.hpp"

namespace tools {

  template <typename M, typename N>
  bool chmin(M& lhs, const N& rhs) {
    bool updated;
    if constexpr (::std::is_integral_v<M> && ::std::is_integral_v<N>) {
      updated = ::std::cmp_less(rhs, lhs);
    } else {
      updated = rhs < lhs;
    }
    if (updated) lhs = rhs;
    return updated;
  }
}


#line 1 "tools/ceil.hpp"



#line 1 "tools/is_integral.hpp"



#line 5 "tools/is_integral.hpp"

namespace tools {
  template <typename T>
  struct is_integral : ::std::is_integral<T> {};

  template <typename T>
  inline constexpr bool is_integral_v = ::tools::is_integral<T>::value;
}


#line 1 "tools/is_unsigned.hpp"



#line 5 "tools/is_unsigned.hpp"

namespace tools {
  template <typename T>
  struct is_unsigned : ::std::is_unsigned<T> {};

  template <typename T>
  inline constexpr bool is_unsigned_v = ::tools::is_unsigned<T>::value;
}


#line 8 "tools/ceil.hpp"

namespace tools {
  template <typename M, typename N> requires (
    ::tools::is_integral_v<M> && !::std::is_same_v<::std::remove_cv_t<M>, bool> &&
    ::tools::is_integral_v<N> && !::std::is_same_v<::std::remove_cv_t<N>, bool>)
  constexpr ::std::common_type_t<M, N> ceil(const M x, const N y) noexcept {
    assert(y != 0);
    if (y >= 0) {
      if (x > 0) {
        return (x - 1) / y + 1;
      } else {
        if constexpr (::tools::is_unsigned_v<::std::common_type_t<M, N>>) {
          return 0;
        } else {
          return x / y;
        }
      }
    } else {
      if (x >= 0) {
        if constexpr (::tools::is_unsigned_v<::std::common_type_t<M, N>>) {
          return 0;
        } else {
          return x / y;
        }
      } else {
        return (x + 1) / y + 1;
      }
    }
  }
}


#line 15 "tools/segmented_sieve.hpp"

namespace tools {
  template <typename T>
  class segmented_sieve {
  private:
    ::std::vector<T> m_lpf;
    ::std::vector<::std::vector<T>> m_pf;
    ::std::vector<T> m_aux;
    T m_l;

  public:
    segmented_sieve() = default;
    segmented_sieve(const ::tools::segmented_sieve<T>&) = default;
    segmented_sieve(::tools::segmented_sieve<T>&&) = default;
    ~segmented_sieve() = default;
    ::tools::segmented_sieve<T>& operator=(const ::tools::segmented_sieve<T>&) = default;
    ::tools::segmented_sieve<T>& operator=(::tools::segmented_sieve<T>&&) = default;

    segmented_sieve(const T& k, const T& l, const T& r) {
      assert(l <= r);

      const T lpf_max = ::std::max(::tools::floor_sqrt(r), k);
      this->m_lpf.resize(lpf_max + 1);
      ::std::fill(this->m_lpf.begin(), this->m_lpf.end(), ::std::numeric_limits<T>::max());
      this->m_pf.resize(r - l + 1);
      this->m_aux.resize(r - l + 1);
      ::std::iota(this->m_aux.begin(), this->m_aux.end(), l);
      this->m_l = l;

      for (T p = 2; p <= lpf_max; ++p) {
        if (::tools::chmin(this->m_lpf[p], p)) {
          for (T np = p * p; np <= lpf_max; np += p) {
            ::tools::chmin(this->m_lpf[np], p);
          }
          for (T p_q = p, np_q; (np_q = ::tools::ceil(l, p_q) * p_q) <= r; p_q *= p) {
            for (; np_q <= r; np_q += p_q) {
              if (lpf_max < this->m_aux[np_q - l]) {
                this->m_pf[np_q - l].push_back(p);
                this->m_aux[np_q - l] /= p;
              }
            }
          }
        }
      }

      for (T i = l; i <= r; ++i) {
        if (lpf_max < this->m_aux[i - l]) {
          this->m_pf[i - l].push_back(this->m_aux[i - l]);
          this->m_aux[i - l] = 1;
        }
      }
    }

    segmented_sieve(const T& l, const T& r) :
      segmented_sieve(0, l, r) {
    }

    T lpf_max() const {
      return this->m_lpf.size() - 1;
    }
    T l() const {
      return this->m_l;
    }
    T r() const {
      return this->m_l + this->m_pf.size() - 1;
    }

    class prime_factor_iterable {
    private:
      const ::tools::segmented_sieve<T> *m_parent;
      T m_n;

    public:
      class iterator {
      private:
        const prime_factor_iterable *m_parent;
        bool m_large;
        T m_i;

        T n() const {
          return this->m_parent->m_n;
        }

      public:
        using difference_type = ::std::ptrdiff_t;
        using value_type = T;
        using reference = T&;
        using pointer = T*;
        using iterator_category = ::std::input_iterator_tag;

        iterator() = default;
        iterator(const iterator&) = default;
        iterator(iterator&&) = default;
        ~iterator() = default;
        iterator& operator=(const iterator&) = default;
        iterator& operator=(iterator&&) = default;

        iterator(prime_factor_iterable const * const parent, const bool large, const T& i) :
          m_parent(parent), m_large(large), m_i(i) {
        }

        T operator*() const {
          if (this->m_large) {
            return this->m_parent->m_parent->m_pf[this->n() - this->m_parent->m_parent->l()][this->m_i];
          } else {
            return this->m_parent->m_parent->m_lpf[this->m_i];
          }
        }

        iterator& operator++() {
          if (this->m_large) {
            ++this->m_i;
            if (this->m_i == T(this->m_parent->m_parent->m_pf[this->n() - this->m_parent->m_parent->l()].size())) {
              this->m_large = false;
              this->m_i = this->m_parent->m_parent->m_aux[this->n() - this->m_parent->m_parent->l()];
            }
          } else {
            this->m_i /= this->m_parent->m_parent->m_lpf[this->m_i];
          }
          return *this;
        }

        iterator operator++(int) {
          const iterator self = *this;
          ++*this;
          return self;
        }

        friend bool operator==(const iterator& lhs, const iterator& rhs) {
          return lhs.m_large == rhs.m_large && (!lhs.m_large || lhs.n() == rhs.n()) && lhs.m_i == rhs.m_i;
        }

        friend bool operator!=(const iterator& lhs, const iterator& rhs) {
          return !(lhs == rhs);
        }
      };

      prime_factor_iterable(::tools::segmented_sieve<T> const * const parent, const T& n) :
        m_parent(parent), m_n(n) {
      }

      iterator begin() const {
        if (this->m_n <= this->m_parent->lpf_max()) {
          return iterator(this, false, this->m_n);
        } else {
          return iterator(this, true, 0);
        }
      }

      iterator end() const {
        return iterator(this, false, 1);
      }
    };

    class distinct_prime_factor_iterable {
    private:
      const ::tools::segmented_sieve<T> *m_parent;
      T m_n;

    public:
      class iterator {
      private:
        const distinct_prime_factor_iterable *m_parent;
        bool m_large;
        T m_i;
        ::std::pair<T, T> m_value;

        T n() const {
          return this->m_parent->m_n;
        }

        void next() {
          const ::std::vector<T>& lpf = this->m_parent->m_parent->m_lpf;
          if (this->m_large) {
            const ::std::vector<T>& pf = this->m_parent->m_parent->m_pf[this->m_parent->m_n - this->m_parent->m_parent->l()];
            this->m_value.first = pf[this->m_i];
            this->m_value.second = 0;
            for (; this->m_i < T(pf.size()) && pf[this->m_i] == this->m_value.first; ++this->m_i) {
              ++this->m_value.second;
            }
            if (this->m_i == T(pf.size())) {
              this->m_large = false;
              this->m_i = this->m_parent->m_parent->m_aux[this->m_parent->m_n - this->m_parent->m_parent->l()];
              for (; lpf[this->m_i] == this->m_value.first; this->m_i /= lpf[this->m_i]) {
                ++this->m_value.second;
              }
            }
          } else {
            if (this->m_i == 1) {
              this->m_value.first = ::std::numeric_limits<T>::max();
              this->m_value.second = 0;
            } else {
              this->m_value.first = lpf[this->m_i];
              this->m_value.second = 0;
              for (; lpf[this->m_i] == this->m_value.first; this->m_i /= lpf[this->m_i]) {
                ++this->m_value.second;
              }
            }
          }
        }

      public:
        using difference_type = ::std::ptrdiff_t;
        using value_type = ::std::pair<T, T>;
        using reference = ::std::pair<T, T>&;
        using pointer = ::std::pair<T, T>*;
        using iterator_category = ::std::input_iterator_tag;

        iterator() = default;
        iterator(const iterator&) = default;
        iterator(iterator&&) = default;
        ~iterator() = default;
        iterator& operator=(const iterator&) = default;
        iterator& operator=(iterator&&) = default;

        iterator(distinct_prime_factor_iterable const * const parent, const bool large, const T& i) :
          m_parent(parent), m_large(large), m_i(i) {
          this->next();
        }

        ::std::pair<T, T> operator*() const {
          return this->m_value;
        }

        iterator& operator++() {
          this->next();
          return *this;
        }

        iterator operator++(int) {
          const iterator self = *this;
          ++*this;
          return self;
        }

        friend bool operator==(const iterator& lhs, const iterator& rhs) {
          return lhs.n() == rhs.n() && lhs.m_value.first == rhs.m_value.first;
        }

        friend bool operator!=(const iterator& lhs, const iterator& rhs) {
          return !(lhs == rhs);
        }
      };

      distinct_prime_factor_iterable(::tools::segmented_sieve<T> const * const parent, const T& n) :
        m_parent(parent), m_n(n) {
      }

      iterator begin() const {
        if (this->m_n <= this->m_parent->lpf_max()) {
          return iterator(this, false, this->m_n);
        } else {
          return iterator(this, true, 0);
        }
      }

      iterator end() const {
        return iterator(this, false, 1);
      }
    };

    class prime_iterable {
    private:
      const ::tools::segmented_sieve<T> *m_parent;
      T m_lb;
      T m_ub;

    public:
      class iterator {
      private:
        const prime_iterable *m_parent;
        T m_i;

        void next() {
          ++this->m_i;
          for (; this->m_i <= this->m_parent->m_ub && (
            (this->m_i <= this->m_parent->m_parent->lpf_max() && this->m_parent->m_parent->m_lpf[this->m_i] != this->m_i)
            || (this->m_parent->m_parent->lpf_max() < this->m_i && this->m_parent->m_parent->m_pf[this->m_i - this->m_parent->m_parent->l()][0] != this->m_i)
          ); ++this->m_i);
        }

      public:
        using difference_type = ::std::ptrdiff_t;
        using value_type = T;
        using reference = T&;
        using pointer = T*;
        using iterator_category = ::std::input_iterator_tag;

        iterator() = default;
        iterator(const iterator&) = default;
        iterator(iterator&&) = default;
        ~iterator() = default;
        iterator& operator=(const iterator&) = default;
        iterator& operator=(iterator&&) = default;

        iterator(prime_iterable const * const parent, const T& i) :
          m_parent(parent), m_i(i) {
          this->next();
        }

        T operator*() const {
          return this->m_i;
        }

        iterator& operator++() {
          this->next();
          return *this;
        }

        iterator operator++(int) {
          const iterator self = *this;
          ++*this;
          return self;
        }

        friend bool operator==(const iterator& lhs, const iterator& rhs) {
          return lhs.m_i == rhs.m_i;
        }

        friend bool operator!=(const iterator& lhs, const iterator& rhs) {
          return !(lhs == rhs);
        }
      };

      prime_iterable(::tools::segmented_sieve<T> const * const parent, const T& lb, const T& ub) :
        m_parent(parent), m_lb(lb), m_ub(ub) {
      }

      iterator begin() const {
        return iterator(this, this->m_lb - 1);
      }

      iterator end() const {
        return iterator(this, this->m_ub);
      }
    };

    prime_factor_iterable prime_factor_range(const T& n) const {
      assert((1 <= n && n <= this->lpf_max()) || (this->l() <= n && n <= this->r()));
      return prime_factor_iterable(this, n);
    }

    distinct_prime_factor_iterable distinct_prime_factor_range(const T& n) const {
      assert((1 <= n && n <= this->lpf_max()) || (this->l() <= n && n <= this->r()));
      return distinct_prime_factor_iterable(this, n);
    }

    prime_iterable prime_range(const T& lb, const T& ub) const {
      assert(lb <= ub);
      const bool is_in_small_sieve = 1 <= lb && ub <= this->lpf_max();
      const bool is_in_large_sieve = this->l() <= lb && ub <= this->r();
      assert(is_in_small_sieve || is_in_large_sieve);
      return prime_iterable(this, lb, ub);
    }
  };
}


#line 8 "tests/segmented_sieve.test.cpp"

using ll = long long;
using mint = atcoder::modint998244353;

int main() {
  std::cin.tie(nullptr);
  std::ios_base::sync_with_stdio(false);

  ll N, K;
  std::cin >> N >> K;

  std::unordered_map<ll, ll> nCk;
  if (K > 0) {
    tools::segmented_sieve<ll> sieve(K, N - K + 1, N);
    for (ll i = N - K + 1; i <= N; ++i) {
      for (const ll& p : sieve.prime_factor_range(i)) {
        ++nCk[p];
      }
    }

    for (ll i = 1; i <= K; ++i) {
      for (const ll& p : sieve.prime_factor_range(i)) {
        --nCk[p];
      }
    }
  }

  mint answer(1);
  for (const auto& [p, q] : nCk) {
    answer *= mint(q + 1);
  }
  std::cout << answer.val() << '\n';
  return 0;
}
Back to top page