This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "tools/ceil_kth_root.hpp"
template <typename T, typename U>
T ceil_kth_root(T x, U k);
It returns $\left\lceil x^\frac{1}{k} \right\rceil$.
#ifndef TOOLS_CEIL_KTH_ROOT_HPP
#define TOOLS_CEIL_KTH_ROOT_HPP
#include <cassert>
#include "tools/ceil_sqrt.hpp"
#include "tools/ceil.hpp"
#include "tools/pow.hpp"
#include "tools/safe_int.hpp"
namespace tools {
template <typename T, typename U>
T ceil_kth_root(const T x, const U k) {
assert(x >= 0);
assert(k >= 1);
if (x == 0) return 0;
if (k == 1) return x;
if (k == 2) return ::tools::ceil_sqrt(x);
if (k == 3) {
T ok = 1;
T ng;
for (ng = 2; (ng - 1) * (ng - 1) < ::tools::ceil(x, ng - 1); ng *= 2);
while (ng - ok > 1) {
const T mid = ok + (ng - ok) / 2;
if ((mid - 1) * (mid - 1) < ::tools::ceil(x, mid - 1)) {
ok = mid;
} else {
ng = mid;
}
}
return ok;
}
T ok = 1;
T ng;
for (ng = 2; ::tools::pow(::tools::safe_int<T>(ng - 1), k) < ::tools::safe_int<T>(x); ng *= 2);
while (ng - ok > 1) {
const T mid = ok + (ng - ok) / 2;
if (::tools::pow(::tools::safe_int<T>(mid - 1), k) < ::tools::safe_int<T>(x)) {
ok = mid;
} else {
ng = mid;
}
}
return ok;
}
}
#endif
#line 1 "tools/ceil_kth_root.hpp"
#include <cassert>
#line 1 "tools/ceil_sqrt.hpp"
#line 1 "tools/ceil.hpp"
#line 5 "tools/ceil.hpp"
#include <type_traits>
#line 1 "tools/is_integral.hpp"
#line 5 "tools/is_integral.hpp"
namespace tools {
template <typename T>
struct is_integral : ::std::is_integral<T> {};
template <typename T>
inline constexpr bool is_integral_v = ::tools::is_integral<T>::value;
}
#line 1 "tools/is_unsigned.hpp"
#line 5 "tools/is_unsigned.hpp"
namespace tools {
template <typename T>
struct is_unsigned : ::std::is_unsigned<T> {};
template <typename T>
inline constexpr bool is_unsigned_v = ::tools::is_unsigned<T>::value;
}
#line 8 "tools/ceil.hpp"
namespace tools {
template <typename M, typename N> requires (
::tools::is_integral_v<M> && !::std::is_same_v<::std::remove_cv_t<M>, bool> &&
::tools::is_integral_v<N> && !::std::is_same_v<::std::remove_cv_t<N>, bool>)
constexpr ::std::common_type_t<M, N> ceil(const M x, const N y) noexcept {
assert(y != 0);
if (y >= 0) {
if (x > 0) {
return (x - 1) / y + 1;
} else {
if constexpr (::tools::is_unsigned_v<::std::common_type_t<M, N>>) {
return 0;
} else {
return x / y;
}
}
} else {
if (x >= 0) {
if constexpr (::tools::is_unsigned_v<::std::common_type_t<M, N>>) {
return 0;
} else {
return x / y;
}
} else {
return (x + 1) / y + 1;
}
}
}
}
#line 6 "tools/ceil_sqrt.hpp"
namespace tools {
template <typename T>
T ceil_sqrt(const T n) {
assert(n >= 0);
if (n == 0) return 0;
T ok = 1;
T ng;
for (ng = 2; ng - 1 < tools::ceil(n, ng - 1); ng *= 2);
while (ng - ok > 1) {
const T mid = ok + (ng - ok) / 2;
if (mid - 1 < tools::ceil(n, mid - 1)) {
ok = mid;
} else {
ng = mid;
}
}
return ok;
}
}
#line 1 "tools/pow.hpp"
#line 6 "tools/pow.hpp"
#include <cmath>
#line 1 "tools/monoid.hpp"
#line 5 "tools/monoid.hpp"
#include <algorithm>
#include <limits>
#line 1 "tools/gcd.hpp"
#line 5 "tools/gcd.hpp"
#include <numeric>
namespace tools {
template <typename M, typename N>
constexpr ::std::common_type_t<M, N> gcd(const M m, const N n) {
return ::std::gcd(m, n);
}
}
#line 9 "tools/monoid.hpp"
namespace tools {
namespace monoid {
template <typename M, M ...dummy>
struct max;
template <typename M>
struct max<M> {
static_assert(::std::is_arithmetic_v<M>, "M must be a built-in arithmetic type.");
using T = M;
static T op(const T lhs, const T rhs) {
return ::std::max(lhs, rhs);
}
static T e() {
if constexpr (::std::is_integral_v<M>) {
return ::std::numeric_limits<M>::min();
} else {
return -::std::numeric_limits<M>::infinity();
}
}
};
template <typename M, M E>
struct max<M, E> {
static_assert(::std::is_integral_v<M>, "M must be a built-in integral type.");
using T = M;
static T op(const T lhs, const T rhs) {
assert(E <= lhs);
assert(E <= rhs);
return ::std::max(lhs, rhs);
}
static T e() {
return E;
}
};
template <typename M, M ...dummy>
struct min;
template <typename M>
struct min<M> {
static_assert(::std::is_arithmetic_v<M>, "M must be a built-in arithmetic type.");
using T = M;
static T op(const T lhs, const T rhs) {
return ::std::min(lhs, rhs);
}
static T e() {
if constexpr (::std::is_integral_v<M>) {
return ::std::numeric_limits<M>::max();
} else {
return ::std::numeric_limits<M>::infinity();
}
}
};
template <typename M, M E>
struct min<M, E> {
static_assert(::std::is_integral_v<M>, "M must be a built-in integral type.");
using T = M;
static T op(const T lhs, const T rhs) {
assert(lhs <= E);
assert(rhs <= E);
return ::std::min(lhs, rhs);
}
static T e() {
return E;
}
};
template <typename M>
struct multiplies {
private:
using VR = ::std::conditional_t<::std::is_arithmetic_v<M>, const M, const M&>;
public:
using T = M;
static T op(VR lhs, VR rhs) {
return lhs * rhs;
}
static T e() {
return T(1);
}
};
template <>
struct multiplies<bool> {
using T = bool;
static T op(const bool lhs, const bool rhs) {
return lhs && rhs;
}
static T e() {
return true;
}
};
template <typename M>
struct gcd {
private:
static_assert(!::std::is_arithmetic_v<M> || (::std::is_integral_v<M> && !::std::is_same_v<M, bool>), "If M is a built-in arithmetic type, it must be integral except for bool.");
using VR = ::std::conditional_t<::std::is_arithmetic_v<M>, const M, const M&>;
public:
using T = M;
static T op(VR lhs, VR rhs) {
return ::tools::gcd(lhs, rhs);
}
static T e() {
return T(0);
}
};
template <typename M, M E>
struct update {
static_assert(::std::is_integral_v<M>, "M must be a built-in integral type.");
using T = M;
static T op(const T lhs, const T rhs) {
return lhs == E ? rhs : lhs;
}
static T e() {
return E;
}
};
}
}
#line 1 "tools/square.hpp"
#line 1 "tools/is_monoid.hpp"
#line 5 "tools/is_monoid.hpp"
#include <utility>
namespace tools {
template <typename M, typename = void>
struct is_monoid : ::std::false_type {};
template <typename M>
struct is_monoid<M, ::std::enable_if_t<
::std::is_same_v<typename M::T, decltype(M::op(::std::declval<typename M::T>(), ::std::declval<typename M::T>()))> &&
::std::is_same_v<typename M::T, decltype(M::e())>
, void>> : ::std::true_type {};
template <typename M>
inline constexpr bool is_monoid_v = ::tools::is_monoid<M>::value;
}
#line 6 "tools/square.hpp"
namespace tools {
template <typename M>
::std::enable_if_t<::tools::is_monoid_v<M>, typename M::T> square(const typename M::T& x) {
return M::op(x, x);
}
template <typename T>
::std::enable_if_t<!::tools::is_monoid_v<T>, T> square(const T& x) {
return x * x;
}
}
#line 9 "tools/pow.hpp"
namespace tools {
template <typename M, typename E>
::std::enable_if_t<::std::is_integral_v<E>, typename M::T> pow(const typename M::T& base, const E exponent) {
assert(exponent >= 0);
return exponent == 0
? M::e()
: exponent % 2 == 0
? ::tools::square<M>(::tools::pow<M>(base, exponent / 2))
: M::op(::tools::pow<M>(base, exponent - 1), base);
}
template <typename T, typename E>
::std::enable_if_t<::std::is_integral_v<E>, T> pow(const T& base, const E exponent) {
assert(exponent >= 0);
return ::tools::pow<::tools::monoid::multiplies<T>>(base, exponent);
}
template <typename T, typename E>
auto pow(const T base, const E exponent) -> ::std::enable_if_t<!::std::is_integral_v<E>, decltype(::std::pow(base, exponent))> {
return ::std::pow(base, exponent);
}
}
#line 1 "tools/safe_int.hpp"
#line 5 "tools/safe_int.hpp"
#include <cstddef>
#line 8 "tools/safe_int.hpp"
#include <array>
#include <optional>
#include <iostream>
namespace tools {
template <typename T, typename = void>
class safe_int;
template <typename T>
class safe_int<T, ::std::enable_if_t<::std::is_signed_v<T>>> {
private:
enum class type {
finite,
pos_inf,
neg_inf,
nan
};
typename ::tools::safe_int<T>::type m_type;
T m_value;
constexpr safe_int(const typename ::tools::safe_int<T>::type type) :
m_type(type), m_value(T()) {
}
public:
constexpr safe_int() :
m_type(::tools::safe_int<T>::type::finite), m_value(T()) {
}
explicit constexpr safe_int(const T value) :
m_type(::tools::safe_int<T>::type::finite), m_value(value) {
}
constexpr safe_int(const ::tools::safe_int<T>& other) :
m_type(other.m_type), m_value(other.m_value) {
}
~safe_int() = default;
constexpr ::tools::safe_int<T>& operator=(const ::tools::safe_int<T>& other) {
this->m_type = other.m_type;
this->m_value = other.m_value;
return *this;
}
static constexpr ::tools::safe_int<T> infinity() {
return tools::safe_int<T>(::tools::safe_int<T>::type::pos_inf);
}
static constexpr ::tools::safe_int<T> nan() {
return tools::safe_int<T>(::tools::safe_int<T>::type::nan);
}
private:
static constexpr int f1(const ::tools::safe_int<T>& n) {
switch (n.m_type) {
case ::tools::safe_int<T>::type::neg_inf:
return 0;
case ::tools::safe_int<T>::type::finite:
return 1;
case ::tools::safe_int<T>::type::pos_inf:
return 2;
default: // nan
return 3;
}
};
static constexpr int f2(const ::tools::safe_int<T>& n) {
switch (n.m_type) {
case ::tools::safe_int<T>::type::neg_inf:
return 0;
case ::tools::safe_int<T>::type::finite:
if (n.m_value < 0) {
return 1;
} else if (n.m_value == 0) {
return 2;
} else {
return 3;
}
case ::tools::safe_int<T>::type::pos_inf:
return 4;
default: // nan
return 5;
}
};
static constexpr ::std::optional<::tools::safe_int<T>> Q() {
return ::std::nullopt;
}
static constexpr ::std::optional<::tools::safe_int<T>> Z() {
return ::std::optional<::tools::safe_int<T>>(::tools::safe_int<T>(0));
}
static constexpr ::std::optional<::tools::safe_int<T>> N() {
return ::std::optional<::tools::safe_int<T>>(::tools::safe_int<T>(::tools::safe_int<T>::type::neg_inf));
}
static constexpr ::std::optional<::tools::safe_int<T>> P() {
return ::std::optional<::tools::safe_int<T>>(::tools::safe_int<T>(::tools::safe_int<T>::type::pos_inf));
}
static constexpr ::std::optional<::tools::safe_int<T>> U() {
return ::std::optional<::tools::safe_int<T>>(::tools::safe_int<T>(::tools::safe_int<T>::type::nan));
}
static constexpr ::std::optional<bool> BQ() {
return ::std::nullopt;
}
static constexpr ::std::optional<bool> BF() {
return ::std::optional<bool>(false);
}
static constexpr ::std::optional<bool> BT() {
return ::std::optional<bool>(true);
}
public:
constexpr bool is_finite() const {
return this->m_type == ::tools::safe_int<T>::type::finite;
}
constexpr bool is_nan() const {
return this->m_type == ::tools::safe_int<T>::type::nan;
}
constexpr T val() const {
assert(this->is_finite());
return this->m_value;
}
friend constexpr bool operator==(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
constexpr auto table = ::std::array<::std::array<::std::optional<bool>, 4>, 4>({{
{BT(), BF(), BF(), BF()},
{BF(), BQ(), BF(), BF()},
{BF(), BF(), BT(), BF()},
{BF(), BF(), BF(), BF()}
}});
if (const auto r = table[f1(x)][f1(y)]; r) return *r;
return x.m_value == y.m_value;
}
friend constexpr bool operator!=(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
return !(x == y);
}
constexpr ::tools::safe_int<T> operator+() const {
return *this;
}
constexpr ::tools::safe_int<T> operator-() const {
constexpr auto table = ::std::array<::std::optional<::tools::safe_int<T>>, 4>({
{P(), Q(), N(), U()}
});
if (const auto r = table[f1(*this)]; r) return *r;
if (this->m_value == ::std::numeric_limits<T>::min()) return *U();
return ::tools::safe_int<T>(-this->m_value);
}
friend constexpr ::tools::safe_int<T> operator+(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
constexpr auto table = ::std::array<::std::array<::std::optional<::tools::safe_int<T>>, 4>, 4>({{
{N(), N(), U(), U()},
{N(), Q(), P(), U()},
{U(), P(), P(), U()},
{U(), U(), U(), U()}
}});
if (const auto r = table[f1(x)][f1(y)]; r) return *r;
if (y.m_value > 0 && x.m_value > ::std::numeric_limits<T>::max() - y.m_value) return *U();
if (y.m_value < 0 && x.m_value < ::std::numeric_limits<T>::min() - y.m_value) return *U();
return ::tools::safe_int<T>(x.m_value + y.m_value);
}
friend constexpr ::tools::safe_int<T> operator+(const ::tools::safe_int<T>& x, const T& y) {
return x + tools::safe_int<T>(y);
}
friend constexpr ::tools::safe_int<T> operator+(const T& x, const ::tools::safe_int<T>& y) {
return tools::safe_int<T>(x) + y;
}
friend constexpr ::tools::safe_int<T> operator-(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
constexpr auto table = ::std::array<::std::array<::std::optional<::tools::safe_int<T>>, 4>, 4>({{
{U(), N(), N(), U()},
{P(), Q(), N(), U()},
{P(), P(), U(), U()},
{U(), U(), U(), U()}
}});
if (const auto r = table[f1(x)][f1(y)]; r) return *r;
if (y.m_value < 0 && x.m_value > ::std::numeric_limits<T>::max() + y.m_value) return *U();
if (y.m_value > 0 && x.m_value < ::std::numeric_limits<T>::min() + y.m_value) return *U();
return ::tools::safe_int<T>(x.m_value - y.m_value);
}
friend constexpr ::tools::safe_int<T> operator-(const ::tools::safe_int<T>& x, const T& y) {
return x - tools::safe_int<T>(y);
}
friend constexpr ::tools::safe_int<T> operator-(const T& x, const ::tools::safe_int<T>& y) {
return tools::safe_int<T>(x) - y;
}
friend constexpr ::tools::safe_int<T> operator*(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
constexpr auto table = ::std::array<::std::array<::std::optional<::tools::safe_int<T>>, 6>, 6>({{
{P(), P(), U(), N(), N(), U()},
{P(), Q(), Z(), Q(), N(), U()},
{U(), Z(), Z(), Z(), U(), U()},
{N(), Q(), Z(), Q(), P(), U()},
{N(), N(), U(), P(), P(), U()},
{U(), U(), U(), U(), U(), U()}
}});
if (const auto r = table[f2(x)][f2(y)]; r) return *r;
if (x.m_value > 0) {
if (y.m_value > 0) {
if (x.m_value > ::std::numeric_limits<T>::max() / y.m_value) {
return *U();
}
} else {
if (y.m_value < ::std::numeric_limits<T>::min() / x.m_value) {
return *U();
}
}
} else {
if (y.m_value > 0) {
if (x.m_value < ::std::numeric_limits<T>::min() / y.m_value) {
return *U();
}
} else {
if (x.m_value != 0 && y.m_value < ::std::numeric_limits<T>::max() / x.m_value) {
return *U();
}
}
}
return ::tools::safe_int<T>(x.m_value * y.m_value);
}
friend constexpr ::tools::safe_int<T> operator*(const ::tools::safe_int<T>& x, const T& y) {
return x * tools::safe_int<T>(y);
}
friend constexpr ::tools::safe_int<T> operator*(const T& x, const ::tools::safe_int<T>& y) {
return tools::safe_int<T>(x) * y;
}
friend constexpr ::tools::safe_int<T> operator/(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
constexpr auto table = ::std::array<::std::array<::std::optional<::tools::safe_int<T>>, 6>, 6>({{
{U(), P(), U(), N(), U(), U()},
{Z(), Q(), U(), Q(), Z(), U()},
{Z(), Z(), U(), Z(), Z(), U()},
{Z(), Q(), U(), Q(), Z(), U()},
{U(), N(), U(), P(), U(), U()},
{U(), U(), U(), U(), U(), U()}
}});
if (const auto r = table[f2(x)][f2(y)]; r) return *r;
if (x.m_value == ::std::numeric_limits<T>::min() && y.m_value == -1) return *U();
return ::tools::safe_int<T>(x.m_value / y.m_value);
}
friend constexpr ::tools::safe_int<T> operator/(const ::tools::safe_int<T>& x, const T& y) {
return x / tools::safe_int<T>(y);
}
friend constexpr ::tools::safe_int<T> operator/(const T& x, const ::tools::safe_int<T>& y) {
return tools::safe_int<T>(x) / y;
}
friend constexpr ::tools::safe_int<T> operator%(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
constexpr auto table = ::std::array<::std::array<::std::optional<::tools::safe_int<T>>, 6>, 6>({{
{U(), U(), U(), U(), U(), U()},
{U(), Q(), U(), Q(), U(), U()},
{U(), Z(), U(), Z(), U(), U()},
{U(), Q(), U(), Q(), U(), U()},
{U(), U(), U(), U(), U(), U()},
{U(), U(), U(), U(), U(), U()}
}});
if (const auto r = table[f2(x)][f2(y)]; r) return *r;
if (x.m_value == ::std::numeric_limits<T>::min() && y.m_value == -1) return *U();
return ::tools::safe_int<T>(x.m_value % y.m_value);
}
friend constexpr ::tools::safe_int<T> operator%(const ::tools::safe_int<T>& x, const T& y) {
return x % tools::safe_int<T>(y);
}
friend constexpr ::tools::safe_int<T> operator%(const T& x, const ::tools::safe_int<T>& y) {
return tools::safe_int<T>(x) % y;
}
constexpr ::tools::safe_int<T>& operator+=(const ::tools::safe_int<T>& other) {
return *this = *this + other;
}
constexpr ::tools::safe_int<T>& operator+=(const T& other) {
return *this = *this + ::tools::safe_int<T>(other);
}
constexpr ::tools::safe_int<T>& operator-=(const ::tools::safe_int<T>& other) {
return *this = *this - other;
}
constexpr ::tools::safe_int<T>& operator-=(const T& other) {
return *this = *this - ::tools::safe_int<T>(other);
}
constexpr ::tools::safe_int<T>& operator*=(const ::tools::safe_int<T>& other) {
return *this = *this * other;
}
constexpr ::tools::safe_int<T>& operator*=(const T& other) {
return *this = *this * ::tools::safe_int<T>(other);
}
constexpr ::tools::safe_int<T>& operator/=(const ::tools::safe_int<T>& other) {
return *this = *this / other;
}
constexpr ::tools::safe_int<T>& operator/=(const T& other) {
return *this = *this / ::tools::safe_int<T>(other);
}
constexpr ::tools::safe_int<T>& operator%=(const ::tools::safe_int<T>& other) {
return *this = *this % other;
}
constexpr ::tools::safe_int<T>& operator%=(const T& other) {
return *this = *this % ::tools::safe_int<T>(other);
}
constexpr ::tools::safe_int<T>& operator++() {
return *this += ::tools::safe_int<T>(T(1));
}
constexpr ::tools::safe_int<T> operator++(int) {
const auto r = *this;
++(*this);
return r;
}
constexpr ::tools::safe_int<T>& operator--() {
return *this -= ::tools::safe_int<T>(T(1));
}
constexpr ::tools::safe_int<T> operator--(int) {
const auto r = *this;
--(*this);
return r;
}
friend constexpr bool operator<(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
constexpr auto table = ::std::array<::std::array<::std::optional<bool>, 4>, 4>({{
{BF(), BT(), BT(), BF()},
{BF(), BQ(), BT(), BF()},
{BF(), BF(), BF(), BF()},
{BF(), BF(), BF(), BF()}
}});
if (const auto r = table[f1(x)][f1(y)]; r) return *r;
return x.m_value < y.m_value;
}
friend constexpr bool operator>(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
constexpr auto table = ::std::array<::std::array<::std::optional<bool>, 4>, 4>({{
{BF(), BF(), BF(), BF()},
{BT(), BQ(), BF(), BF()},
{BT(), BT(), BF(), BF()},
{BF(), BF(), BF(), BF()}
}});
if (const auto r = table[f1(x)][f1(y)]; r) return *r;
return x.m_value > y.m_value;
}
friend constexpr bool operator<=(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
return x < y || x == y;
}
friend constexpr bool operator>=(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
return x > y || x == y;
}
friend ::std::istream& operator>>(::std::istream& is, ::tools::safe_int<T>& self) {
self.m_type = ::tools::safe_int<T>::type::finite;
return is >> self.m_value;
}
friend ::std::ostream& operator<<(::std::ostream& os, const ::tools::safe_int<T>& self) {
switch (self.m_type) {
case ::tools::safe_int<T>::type::neg_inf:
return os << "-inf";
case ::tools::safe_int<T>::type::finite:
return os << self.m_value;
case ::tools::safe_int<T>::type::pos_inf:
return os << "inf";
default: // nan
return os << "nan";
}
}
};
template <typename T>
class safe_int<T, ::std::enable_if_t<::std::is_unsigned_v<T>>> {
private:
enum class type {
finite,
pos_inf,
nan
};
typename ::tools::safe_int<T>::type m_type;
T m_value;
constexpr safe_int(const typename ::tools::safe_int<T>::type type) :
m_type(type), m_value(T()) {
}
public:
constexpr safe_int() :
m_type(::tools::safe_int<T>::type::finite), m_value(T()) {
}
explicit constexpr safe_int(const T value) :
m_type(::tools::safe_int<T>::type::finite), m_value(value) {
}
constexpr safe_int(const ::tools::safe_int<T>& other) :
m_type(other.m_type), m_value(other.m_value) {
}
~safe_int() = default;
constexpr ::tools::safe_int<T>& operator=(const ::tools::safe_int<T>& other) {
this->m_type = other.m_type;
this->m_value = other.m_value;
return *this;
}
static constexpr ::tools::safe_int<T> infinity() {
return tools::safe_int<T>(::tools::safe_int<T>::type::pos_inf);
}
static constexpr ::tools::safe_int<T> nan() {
return tools::safe_int<T>(::tools::safe_int<T>::type::nan);
}
private:
static constexpr int f1(const ::tools::safe_int<T>& n) {
switch (n.m_type) {
case ::tools::safe_int<T>::type::finite:
return 0;
case ::tools::safe_int<T>::type::pos_inf:
return 1;
default: // nan
return 2;
}
};
static constexpr int f2(const ::tools::safe_int<T>& n) {
switch (n.m_type) {
case ::tools::safe_int<T>::type::finite:
if (n.m_value == 0) {
return 0;
} else {
return 1;
}
case ::tools::safe_int<T>::type::pos_inf:
return 2;
default: // nan
return 3;
}
};
static constexpr ::std::optional<::tools::safe_int<T>> Q() {
return ::std::nullopt;
}
static constexpr ::std::optional<::tools::safe_int<T>> Z() {
return ::std::optional<::tools::safe_int<T>>(::tools::safe_int<T>(0));
}
static constexpr ::std::optional<::tools::safe_int<T>> P() {
return ::std::optional<::tools::safe_int<T>>(::tools::safe_int<T>(::tools::safe_int<T>::type::pos_inf));
}
static constexpr ::std::optional<::tools::safe_int<T>> U() {
return ::std::optional<::tools::safe_int<T>>(::tools::safe_int<T>(::tools::safe_int<T>::type::nan));
}
static constexpr ::std::optional<bool> BQ() {
return ::std::nullopt;
}
static constexpr ::std::optional<bool> BF() {
return ::std::optional<bool>(false);
}
static constexpr ::std::optional<bool> BT() {
return ::std::optional<bool>(true);
}
public:
constexpr bool is_finite() const {
return this->m_type == ::tools::safe_int<T>::type::finite;
}
constexpr bool is_nan() const {
return this->m_type == ::tools::safe_int<T>::type::nan;
}
constexpr T val() const {
assert(this->is_finite());
return this->m_value;
}
friend constexpr bool operator==(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
constexpr auto table = ::std::array<::std::array<::std::optional<bool>, 3>, 3>({{
{BQ(), BF(), BF()},
{BF(), BT(), BF()},
{BF(), BF(), BF()}
}});
if (const auto r = table[f1(x)][f1(y)]; r) return *r;
return x.m_value == y.m_value;
}
friend constexpr bool operator!=(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
return !(x == y);
}
constexpr ::tools::safe_int<T> operator+() const {
return *this;
}
constexpr ::tools::safe_int<T> operator-() const {
constexpr auto table = ::std::array<::std::optional<::tools::safe_int<T>>, 3>({
{Q(), U(), U()}
});
if (const auto r = table[f1(*this)]; r) return *r;
if (this->m_value > 0) return *U();
return ::tools::safe_int<T>(0);
}
friend constexpr ::tools::safe_int<T> operator+(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
constexpr auto table = ::std::array<::std::array<::std::optional<::tools::safe_int<T>>, 3>, 3>({{
{Q(), P(), U()},
{P(), P(), U()},
{U(), U(), U()}
}});
if (const auto r = table[f1(x)][f1(y)]; r) return *r;
if (y.m_value > 0 && x.m_value > ::std::numeric_limits<T>::max() - y.m_value) return *U();
return ::tools::safe_int<T>(x.m_value + y.m_value);
}
friend constexpr ::tools::safe_int<T> operator+(const ::tools::safe_int<T>& x, const T& y) {
return x + tools::safe_int<T>(y);
}
friend constexpr ::tools::safe_int<T> operator+(const T& x, const ::tools::safe_int<T>& y) {
return tools::safe_int<T>(x) + y;
}
friend constexpr ::tools::safe_int<T> operator-(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
constexpr auto table = ::std::array<::std::array<::std::optional<::tools::safe_int<T>>, 3>, 3>({{
{Q(), U(), U()},
{P(), U(), U()},
{U(), U(), U()}
}});
if (const auto r = table[f1(x)][f1(y)]; r) return *r;
if (x.m_value < y.m_value) return *U();
return ::tools::safe_int<T>(x.m_value - y.m_value);
}
friend constexpr ::tools::safe_int<T> operator-(const ::tools::safe_int<T>& x, const T& y) {
return x - tools::safe_int<T>(y);
}
friend constexpr ::tools::safe_int<T> operator-(const T& x, const ::tools::safe_int<T>& y) {
return tools::safe_int<T>(x) - y;
}
friend constexpr ::tools::safe_int<T> operator*(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
constexpr auto table = ::std::array<::std::array<::std::optional<::tools::safe_int<T>>, 4>, 4>({{
{Z(), Z(), U(), U()},
{Z(), Q(), P(), U()},
{U(), P(), P(), U()},
{U(), U(), U(), U()}
}});
if (const auto r = table[f2(x)][f2(y)]; r) return *r;
if (x.m_value > ::std::numeric_limits<T>::max() / y.m_value) {
return *U();
}
return ::tools::safe_int<T>(x.m_value * y.m_value);
}
friend constexpr ::tools::safe_int<T> operator*(const ::tools::safe_int<T>& x, const T& y) {
return x * tools::safe_int<T>(y);
}
friend constexpr ::tools::safe_int<T> operator*(const T& x, const ::tools::safe_int<T>& y) {
return tools::safe_int<T>(x) * y;
}
friend constexpr ::tools::safe_int<T> operator/(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
constexpr auto table = ::std::array<::std::array<::std::optional<::tools::safe_int<T>>, 4>, 4>({{
{U(), Z(), Z(), U()},
{U(), Q(), Z(), U()},
{U(), P(), U(), U()},
{U(), U(), U(), U()}
}});
if (const auto r = table[f2(x)][f2(y)]; r) return *r;
return ::tools::safe_int<T>(x.m_value / y.m_value);
}
friend constexpr ::tools::safe_int<T> operator/(const ::tools::safe_int<T>& x, const T& y) {
return x / tools::safe_int<T>(y);
}
friend constexpr ::tools::safe_int<T> operator/(const T& x, const ::tools::safe_int<T>& y) {
return tools::safe_int<T>(x) / y;
}
friend constexpr ::tools::safe_int<T> operator%(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
constexpr auto table = ::std::array<::std::array<::std::optional<::tools::safe_int<T>>, 4>, 4>({{
{U(), Z(), U(), U()},
{U(), Q(), U(), U()},
{U(), U(), U(), U()},
{U(), U(), U(), U()}
}});
if (const auto r = table[f2(x)][f2(y)]; r) return *r;
return ::tools::safe_int<T>(x.m_value % y.m_value);
}
friend constexpr ::tools::safe_int<T> operator%(const ::tools::safe_int<T>& x, const T& y) {
return x % tools::safe_int<T>(y);
}
friend constexpr ::tools::safe_int<T> operator%(const T& x, const ::tools::safe_int<T>& y) {
return tools::safe_int<T>(x) % y;
}
constexpr ::tools::safe_int<T>& operator+=(const ::tools::safe_int<T>& other) {
return *this = *this + other;
}
constexpr ::tools::safe_int<T>& operator+=(const T& other) {
return *this = *this + ::tools::safe_int<T>(other);
}
constexpr ::tools::safe_int<T>& operator-=(const ::tools::safe_int<T>& other) {
return *this = *this - other;
}
constexpr ::tools::safe_int<T>& operator-=(const T& other) {
return *this = *this - ::tools::safe_int<T>(other);
}
constexpr ::tools::safe_int<T>& operator*=(const ::tools::safe_int<T>& other) {
return *this = *this * other;
}
constexpr ::tools::safe_int<T>& operator*=(const T& other) {
return *this = *this * ::tools::safe_int<T>(other);
}
constexpr ::tools::safe_int<T>& operator/=(const ::tools::safe_int<T>& other) {
return *this = *this / other;
}
constexpr ::tools::safe_int<T>& operator/=(const T& other) {
return *this = *this / ::tools::safe_int<T>(other);
}
constexpr ::tools::safe_int<T>& operator%=(const ::tools::safe_int<T>& other) {
return *this = *this % other;
}
constexpr ::tools::safe_int<T>& operator%=(const T& other) {
return *this = *this % ::tools::safe_int<T>(other);
}
constexpr ::tools::safe_int<T>& operator++() {
return *this += ::tools::safe_int<T>(T(1));
}
constexpr ::tools::safe_int<T> operator++(int) {
const auto r = *this;
++(*this);
return r;
}
constexpr ::tools::safe_int<T>& operator--() {
return *this -= ::tools::safe_int<T>(T(1));
}
constexpr ::tools::safe_int<T> operator--(int) {
const auto r = *this;
--(*this);
return r;
}
friend constexpr bool operator<(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
constexpr auto table = ::std::array<::std::array<::std::optional<bool>, 3>, 3>({{
{BQ(), BT(), BF()},
{BF(), BF(), BF()},
{BF(), BF(), BF()}
}});
if (const auto r = table[f1(x)][f1(y)]; r) return *r;
return x.m_value < y.m_value;
}
friend constexpr bool operator>(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
constexpr auto table = ::std::array<::std::array<::std::optional<bool>, 3>, 3>({{
{BQ(), BF(), BF()},
{BT(), BF(), BF()},
{BF(), BF(), BF()}
}});
if (const auto r = table[f1(x)][f1(y)]; r) return *r;
return x.m_value > y.m_value;
}
friend constexpr bool operator<=(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
return x < y || x == y;
}
friend constexpr bool operator>=(const ::tools::safe_int<T>& x, const ::tools::safe_int<T>& y) {
return x > y || x == y;
}
friend ::std::istream& operator>>(::std::istream& is, ::tools::safe_int<T>& self) {
self.m_type = ::tools::safe_int<T>::type::finite;
return is >> self.m_value;
}
friend ::std::ostream& operator<<(::std::ostream& os, const ::tools::safe_int<T>& self) {
switch (self.m_type) {
case ::tools::safe_int<T>::type::finite:
return os << self.m_value;
case ::tools::safe_int<T>::type::pos_inf:
return os << "inf";
default: // nan
return os << "nan";
}
}
};
}
#line 9 "tools/ceil_kth_root.hpp"
namespace tools {
template <typename T, typename U>
T ceil_kth_root(const T x, const U k) {
assert(x >= 0);
assert(k >= 1);
if (x == 0) return 0;
if (k == 1) return x;
if (k == 2) return ::tools::ceil_sqrt(x);
if (k == 3) {
T ok = 1;
T ng;
for (ng = 2; (ng - 1) * (ng - 1) < ::tools::ceil(x, ng - 1); ng *= 2);
while (ng - ok > 1) {
const T mid = ok + (ng - ok) / 2;
if ((mid - 1) * (mid - 1) < ::tools::ceil(x, mid - 1)) {
ok = mid;
} else {
ng = mid;
}
}
return ok;
}
T ok = 1;
T ng;
for (ng = 2; ::tools::pow(::tools::safe_int<T>(ng - 1), k) < ::tools::safe_int<T>(x); ng *= 2);
while (ng - ok > 1) {
const T mid = ok + (ng - ok) / 2;
if (::tools::pow(::tools::safe_int<T>(mid - 1), k) < ::tools::safe_int<T>(x)) {
ok = mid;
} else {
ng = mid;
}
}
return ok;
}
}