This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "tools/ceil_sqrt.hpp"
template <typename T>
T ceil_sqrt(T x);
It returns $\left\lceil \sqrt{x} \right\rceil$.
#ifndef TOOLS_CEIL_SQRT_HPP
#define TOOLS_CEIL_SQRT_HPP
#include <cassert>
#include "tools/ceil.hpp"
namespace tools {
template <typename T>
T ceil_sqrt(const T n) {
assert(n >= 0);
if (n == 0) return 0;
T ok = 1;
T ng;
for (ng = 2; ng - 1 < tools::ceil(n, ng - 1); ng *= 2);
while (ng - ok > 1) {
const T mid = ok + (ng - ok) / 2;
if (mid - 1 < tools::ceil(n, mid - 1)) {
ok = mid;
} else {
ng = mid;
}
}
return ok;
}
}
#endif
#line 1 "tools/ceil_sqrt.hpp"
#include <cassert>
#line 1 "tools/ceil.hpp"
#line 5 "tools/ceil.hpp"
#include <type_traits>
#line 1 "tools/is_integral.hpp"
#line 5 "tools/is_integral.hpp"
namespace tools {
template <typename T>
struct is_integral : ::std::is_integral<T> {};
template <typename T>
inline constexpr bool is_integral_v = ::tools::is_integral<T>::value;
}
#line 1 "tools/is_unsigned.hpp"
#line 5 "tools/is_unsigned.hpp"
namespace tools {
template <typename T>
struct is_unsigned : ::std::is_unsigned<T> {};
template <typename T>
inline constexpr bool is_unsigned_v = ::tools::is_unsigned<T>::value;
}
#line 8 "tools/ceil.hpp"
namespace tools {
template <typename M, typename N> requires (
::tools::is_integral_v<M> && !::std::is_same_v<::std::remove_cv_t<M>, bool> &&
::tools::is_integral_v<N> && !::std::is_same_v<::std::remove_cv_t<N>, bool>)
constexpr ::std::common_type_t<M, N> ceil(const M x, const N y) noexcept {
assert(y != 0);
if (y >= 0) {
if (x > 0) {
return (x - 1) / y + 1;
} else {
if constexpr (::tools::is_unsigned_v<::std::common_type_t<M, N>>) {
return 0;
} else {
return x / y;
}
}
} else {
if (x >= 0) {
if constexpr (::tools::is_unsigned_v<::std::common_type_t<M, N>>) {
return 0;
} else {
return x / y;
}
} else {
return (x + 1) / y + 1;
}
}
}
}
#line 6 "tools/ceil_sqrt.hpp"
namespace tools {
template <typename T>
T ceil_sqrt(const T n) {
assert(n >= 0);
if (n == 0) return 0;
T ok = 1;
T ng;
for (ng = 2; ng - 1 < tools::ceil(n, ng - 1); ng *= 2);
while (ng - ok > 1) {
const T mid = ok + (ng - ok) / 2;
if (mid - 1 < tools::ceil(n, mid - 1)) {
ok = mid;
} else {
ng = mid;
}
}
return ok;
}
}