This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "tools/tsort.hpp"
It is a class about topological sorting.
tsort graph(int n);
It creates a directed graph with $n$ vertices and $0$ edges.
int graph.size();
It returns $n$.
int graph.add_edge(int u, int v);
It adds a directed edge oriented from $u$ to $v$. It returns an integer $k$ such that this is the $k$-th edge that is added.
struct edge {
int from;
int to;
};
edge graph.get_edge(int k);
It returns the $k$-th edge.
std::vector<edge> graph.edges();
It returns all the edges in the graph.
The edges are ordered in the same order as added by add_edge
.
std::vector<int> graph.query();
Topological sorting is a linear ordering of vertices such that for every directed edge from $u$ to $v$, vertex $u$ comes before $v$ in the ordering. It returns one of the topological sortings for the graph.
template <typename R = long long>
R graph.count();
It returns the number of the topological sortings for the graph.
#ifndef TOOLS_TSORT_HPP
#define TOOLS_TSORT_HPP
#include <cassert>
#include <cstdint>
#include <queue>
#include <utility>
#include <vector>
#include "tools/pow2.hpp"
namespace tools {
class tsort {
public:
struct edge {
int from;
int to;
};
private:
::std::vector<edge> m_edges;
::std::vector<::std::vector<int>> m_graph;
public:
tsort() = default;
explicit tsort(const int n) : m_graph(n) {
}
int size() const {
return this->m_graph.size();
}
int add_edge(const int u, const int v) {
assert(0 <= u && u < this->size());
assert(0 <= v && v < this->size());
this->m_edges.push_back({u, v});
this->m_graph[u].push_back(this->m_edges.size() - 1);
return this->m_edges.size() - 1;
}
const edge& get_edge(const int k) const & {
assert(0 <= k && k < this->m_edges.size());
return this->m_edges[k];
}
edge get_edge(const int k) && {
assert(0 <= k && k < this->m_edges.size());
return ::std::move(this->m_edges[k]);
}
const ::std::vector<edge>& edges() const & {
return this->m_edges;
}
::std::vector<edge> edges() && {
return ::std::move(this->m_edges);
}
::std::vector<int> query() const {
::std::vector<int> indegs(this->size(), 0);
for (int u = 0; u < this->size(); ++u) {
for (const auto e : this->m_graph[u]) {
++indegs[this->m_edges[e].to];
}
}
::std::queue<int> queue;
for (int v = 0; v < this->size(); ++v) {
if (indegs[v] == 0) {
queue.push(v);
}
}
::std::vector<int> result;
result.reserve(this->size());
while (!queue.empty()) {
const auto u = queue.front();
queue.pop();
result.push_back(u);
for (const auto e : this->m_graph[u]) {
const auto v = this->m_edges[e].to;
--indegs[v];
if (indegs[v] == 0) {
queue.push(v);
}
}
}
return result;
}
template <typename R = long long>
R count() const {
using u32 = ::std::uint_fast32_t;
assert(this->size() < 32);
::std::vector<u32> graph(this->size());
for (const auto& edge : this->m_edges) {
graph[edge.from] |= u32(1) << edge.to;
}
::std::vector<R> dp(::tools::pow2(this->size()));
dp[0] = R(1);
for (u32 state = 1; state < ::tools::pow2(this->size()); ++state) {
dp[state] = R(0);
for (int v = 0; v < this->size(); ++v) {
if (const auto prev_state = state & ~(u32(1) << v); ((state >> v) & 1) && !(graph[v] & prev_state)) {
dp[state] += dp[prev_state];
}
}
}
return dp[::tools::pow2(this->size()) - 1];
}
};
}
#endif
#line 1 "tools/tsort.hpp"
#include <cassert>
#include <cstdint>
#include <queue>
#include <utility>
#include <vector>
#line 1 "tools/pow2.hpp"
#include <type_traits>
#include <cstddef>
namespace tools {
template <typename T, typename ::std::enable_if<::std::is_unsigned<T>::value, ::std::nullptr_t>::type = nullptr>
constexpr T pow2(const T x) {
return static_cast<T>(1) << x;
}
template <typename T, typename ::std::enable_if<::std::is_signed<T>::value, ::std::nullptr_t>::type = nullptr>
constexpr T pow2(const T x) {
return static_cast<T>(static_cast<typename ::std::make_unsigned<T>::type>(1) << static_cast<typename ::std::make_unsigned<T>::type>(x));
}
}
#line 10 "tools/tsort.hpp"
namespace tools {
class tsort {
public:
struct edge {
int from;
int to;
};
private:
::std::vector<edge> m_edges;
::std::vector<::std::vector<int>> m_graph;
public:
tsort() = default;
explicit tsort(const int n) : m_graph(n) {
}
int size() const {
return this->m_graph.size();
}
int add_edge(const int u, const int v) {
assert(0 <= u && u < this->size());
assert(0 <= v && v < this->size());
this->m_edges.push_back({u, v});
this->m_graph[u].push_back(this->m_edges.size() - 1);
return this->m_edges.size() - 1;
}
const edge& get_edge(const int k) const & {
assert(0 <= k && k < this->m_edges.size());
return this->m_edges[k];
}
edge get_edge(const int k) && {
assert(0 <= k && k < this->m_edges.size());
return ::std::move(this->m_edges[k]);
}
const ::std::vector<edge>& edges() const & {
return this->m_edges;
}
::std::vector<edge> edges() && {
return ::std::move(this->m_edges);
}
::std::vector<int> query() const {
::std::vector<int> indegs(this->size(), 0);
for (int u = 0; u < this->size(); ++u) {
for (const auto e : this->m_graph[u]) {
++indegs[this->m_edges[e].to];
}
}
::std::queue<int> queue;
for (int v = 0; v < this->size(); ++v) {
if (indegs[v] == 0) {
queue.push(v);
}
}
::std::vector<int> result;
result.reserve(this->size());
while (!queue.empty()) {
const auto u = queue.front();
queue.pop();
result.push_back(u);
for (const auto e : this->m_graph[u]) {
const auto v = this->m_edges[e].to;
--indegs[v];
if (indegs[v] == 0) {
queue.push(v);
}
}
}
return result;
}
template <typename R = long long>
R count() const {
using u32 = ::std::uint_fast32_t;
assert(this->size() < 32);
::std::vector<u32> graph(this->size());
for (const auto& edge : this->m_edges) {
graph[edge.from] |= u32(1) << edge.to;
}
::std::vector<R> dp(::tools::pow2(this->size()));
dp[0] = R(1);
for (u32 state = 1; state < ::tools::pow2(this->size()); ++state) {
dp[state] = R(0);
for (int v = 0; v < this->size(); ++v) {
if (const auto prev_state = state & ~(u32(1) << v); ((state >> v) & 1) && !(graph[v] & prev_state)) {
dp[state] += dp[prev_state];
}
}
}
return dp[::tools::pow2(this->size()) - 1];
}
};
}