This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "tools/transposed.hpp"
template <typename T>
std::vector<std::vector<T>> transposed(std::vector<std::vector<T>> A);
template <typename T, std::size_t N>
std::vector<std::array<T, N>> transposed(std::array<std::vector<T>, N> A);
template <typename T, std::size_t M>
std::array<std::vector<T>, M> transposed(std::vector<std::array<T, M>> A);
template <typename T, std::size_t N, std::size_t M>
std::array<std::array<T, N>, M> transposed(std::array<std::array<T, M>, N> A);
Given a $N \times M$ matrix $A$, it returns a $M \times N$ matrix $A^\mathsf{T}$.
If $N = 0$ and a row is std::vector<T>
, it assumes $M = 0$ since $M$ cannot be determined.
A[r].size()
equals $M$.#ifndef TOOLS_TRANSPOSED_HPP
#define TOOLS_TRANSPOSED_HPP
#include <vector>
#include <cassert>
#include <algorithm>
#include <cstddef>
#include <array>
namespace tools {
template <typename T>
::std::vector<::std::vector<T>> transposed(const ::std::vector<::std::vector<T>>& matrix) {
const auto N = matrix.size();
const auto M = matrix.empty() ? 0 : matrix.front().size();
assert(::std::all_of(matrix.begin(), matrix.end(), [&](const auto& row) { return row.size() == M; }));
auto res = ::std::vector(M, ::std::vector<T>(N));
for (::std::size_t r = 0; r < M; ++r) {
for (::std::size_t c = 0; c < N; ++c) {
res[r][c] = matrix[c][r];
}
}
return res;
}
template <typename T, ::std::size_t N>
::std::vector<::std::array<T, N>> transposed(const ::std::array<::std::vector<T>, N>& matrix) {
const auto M = matrix.empty() ? 0 : matrix.front().size();
assert(::std::all_of(matrix.begin(), matrix.end(), [&](const auto& row) { return row.size() == M; }));
auto res = ::std::vector(M, ::std::array<T, N>{});
for (::std::size_t r = 0; r < M; ++r) {
for (::std::size_t c = 0; c < N; ++c) {
res[r][c] = matrix[c][r];
}
}
return res;
}
template <typename T, ::std::size_t M>
::std::array<::std::vector<T>, M> transposed(const ::std::vector<::std::array<T, M>>& matrix) {
const auto N = matrix.size();
::std::array<::std::vector<T>, M> res;
for (::std::size_t r = 0; r < M; ++r) {
res[r].resize(N);
for (::std::size_t c = 0; c < N; ++c) {
res[r][c] = matrix[c][r];
}
}
return res;
}
template <typename T, ::std::size_t N, ::std::size_t M>
::std::array<::std::array<T, N>, M> transposed(const ::std::array<::std::array<T, M>, N>& matrix) {
::std::array<::std::array<T, N>, M> res;
for (::std::size_t r = 0; r < M; ++r) {
for (::std::size_t c = 0; c < N; ++c) {
res[r][c] = matrix[c][r];
}
}
return res;
}
}
#endif
#line 1 "tools/transposed.hpp"
#include <vector>
#include <cassert>
#include <algorithm>
#include <cstddef>
#include <array>
namespace tools {
template <typename T>
::std::vector<::std::vector<T>> transposed(const ::std::vector<::std::vector<T>>& matrix) {
const auto N = matrix.size();
const auto M = matrix.empty() ? 0 : matrix.front().size();
assert(::std::all_of(matrix.begin(), matrix.end(), [&](const auto& row) { return row.size() == M; }));
auto res = ::std::vector(M, ::std::vector<T>(N));
for (::std::size_t r = 0; r < M; ++r) {
for (::std::size_t c = 0; c < N; ++c) {
res[r][c] = matrix[c][r];
}
}
return res;
}
template <typename T, ::std::size_t N>
::std::vector<::std::array<T, N>> transposed(const ::std::array<::std::vector<T>, N>& matrix) {
const auto M = matrix.empty() ? 0 : matrix.front().size();
assert(::std::all_of(matrix.begin(), matrix.end(), [&](const auto& row) { return row.size() == M; }));
auto res = ::std::vector(M, ::std::array<T, N>{});
for (::std::size_t r = 0; r < M; ++r) {
for (::std::size_t c = 0; c < N; ++c) {
res[r][c] = matrix[c][r];
}
}
return res;
}
template <typename T, ::std::size_t M>
::std::array<::std::vector<T>, M> transposed(const ::std::vector<::std::array<T, M>>& matrix) {
const auto N = matrix.size();
::std::array<::std::vector<T>, M> res;
for (::std::size_t r = 0; r < M; ++r) {
res[r].resize(N);
for (::std::size_t c = 0; c < N; ++c) {
res[r][c] = matrix[c][r];
}
}
return res;
}
template <typename T, ::std::size_t N, ::std::size_t M>
::std::array<::std::array<T, N>, M> transposed(const ::std::array<::std::array<T, M>, N>& matrix) {
::std::array<::std::array<T, N>, M> res;
for (::std::size_t r = 0; r < M; ++r) {
for (::std::size_t c = 0; c < N; ++c) {
res[r][c] = matrix[c][r];
}
}
return res;
}
}