This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "tools/scc_graph.hpp"
It takes a directed graph with $n$ vertices as input, and decomposes the graph into strongly connected components.
scc_graph graph(std::size_t n);
It creates a directed graph with $n$ vertices and $0$ edges.
std::size_t graph.size();
It returns $n$.
std::size_t graph.add_edge(std::size_t u, std::size_t v);
It adds a directed edge from $u$ to $v$ to the graph, and returns the index of the added edge.
graph.build()
has not been called ever.std::pair<std::size_t, std::size_t> graph.edge(std::size_t i);
It returns the source and destination of the $i$-th edge of the graph.
const std::vector<std::size_t>& graph.edges_from(std::size_t v);
It returns the indices of the edges from the vertex $v$.
const std::vector<std::size_t>& graph.edges_to(std::size_t v);
It returns the indices of the edges to the vertex $v$.
void graph.build();
It decomposes the graph into strongly connected components.
graph.build()
has not been called ever.std::size_t graph.scc_id(std::size_t v);
It returns the index of the strongly connected components which contains the vertex $v$.
graph.build()
has been called ever.const std::vector<std::vector<std::size_t>>& graph.sccs();
It returns the list of the “list of the vertices” that satisfies the following.
graph.build()
has been called ever.const std::vector<std::size_t>& graph.edges_in_scc(std::size_t x);
Let $E$ be the edges whose source is a vertex in the $x$-th strongly connected component and destination is a vertex in the $x$-th strongly connected component. It returns $E$.
graph.build()
has been called ever.graph.sccs().size()
const std::vector<std::pair<std::size_t, std::vector<std::size_t>>>& graph.edges_from_scc(std::size_t x);
Let $E$ be the edges whose source is a vertex in the $x$-th strongly connected component and destination is a vertex not in the $x$-th strongly connected component. It groups $E$ by the strongly connected component which contains the destination, and returns the list of the groups.
graph.build()
has been called ever.graph.sccs().size()
const std::vector<std::pair<std::size_t, std::vector<std::size_t>>>& graph.edges_to_scc(std::size_t x);
Let $E$ be the edges whose source is a vertex not in the $x$-th strongly connected component and destination is a vertex in the $x$-th strongly connected component. It groups $E$ by the strongly connected component which contains the source, and returns the list of the groups.
graph.build()
has been called ever.graph.sccs().size()
#ifndef TOOLS_SCC_GRAPH_HPP
#define TOOLS_SCC_GRAPH_HPP
#include <vector>
#include <utility>
#include <cstddef>
#include <cassert>
#include <stack>
#include <algorithm>
#include "tools/less_by.hpp"
namespace tools {
class scc_graph {
private:
::std::vector<::std::pair<::std::size_t, ::std::size_t>> m_edges;
::std::vector<::std::vector<::std::size_t>> m_graph;
::std::vector<::std::vector<::std::size_t>> m_rev_graph;
::std::vector<::std::size_t> m_vid2scc;
::std::vector<::std::vector<::std::size_t>> m_sccs;
::std::vector<::std::vector<::std::size_t>> m_edges_in_scc;
::std::vector<::std::vector<::std::pair<::std::size_t, ::std::vector<::std::size_t>>>> m_scc_graph;
::std::vector<::std::vector<::std::pair<::std::size_t, ::std::vector<::std::size_t>>>> m_rev_scc_graph;
bool m_built;
public:
scc_graph() = default;
scc_graph(const ::tools::scc_graph&) = default;
scc_graph(::tools::scc_graph&&) = default;
~scc_graph() = default;
::tools::scc_graph& operator=(const ::tools::scc_graph&) = default;
::tools::scc_graph& operator=(::tools::scc_graph&&) = default;
explicit scc_graph(const ::std::size_t n) : m_graph(n), m_rev_graph(n), m_vid2scc(n), m_built(false) {
}
::std::size_t size() const {
return this->m_graph.size();
}
::std::size_t add_edge(const ::std::size_t from, const ::std::size_t to) {
assert(from < this->size());
assert(to < this->size());
assert(!this->m_built);
const auto edge_id = this->m_edges.size();
this->m_edges.emplace_back(from, to);
this->m_graph[from].push_back(edge_id);
this->m_rev_graph[to].push_back(edge_id);
return edge_id;
}
::std::pair<::std::size_t, ::std::size_t> edge(const ::std::size_t i) const {
assert(i < this->m_edges.size());
return this->m_edges[i];
}
const ::std::vector<::std::size_t>& edges_from(const ::std::size_t i) const {
assert(i < this->size());
return this->m_graph[i];
}
const ::std::vector<::std::size_t>& edges_to(const ::std::size_t i) const {
assert(i < this->size());
return this->m_rev_graph[i];
}
void build() {
assert(!this->m_built);
::std::stack<::std::size_t> ordered_by_dfs;
{
::std::vector<bool> visited(this->size(), false);
::std::stack<::std::pair<bool, ::std::size_t>> stack;
for (::std::size_t i = this->size(); i --> 0;) {
stack.emplace(true, i);
}
while (!stack.empty()) {
const auto [pre, here] = stack.top();
stack.pop();
if (pre) {
if (visited[here]) continue;
visited[here] = true;
stack.emplace(false, here);
for (const auto e : this->m_graph[here]) {
const auto next = this->m_edges[e].second;
if (visited[next]) continue;
stack.emplace(true, next);
}
} else {
ordered_by_dfs.push(here);
}
}
}
{
::std::vector<bool> visited(this->size(), false);
while (!ordered_by_dfs.empty()) {
const auto root = ordered_by_dfs.top();
ordered_by_dfs.pop();
if (visited[root]) continue;
const auto scc_id = this->m_sccs.size();
this->m_sccs.emplace_back();
this->m_edges_in_scc.emplace_back();
this->m_scc_graph.emplace_back();
this->m_rev_scc_graph.emplace_back();
::std::stack<::std::size_t> stack({root});
while (!stack.empty()) {
const auto here = stack.top();
stack.pop();
if (visited[here]) continue;
visited[here] = true;
this->m_vid2scc[here] = scc_id;
this->m_sccs[scc_id].push_back(here);
for (const auto e : this->m_rev_graph[here]) {
const auto next = this->m_edges[e].first;
if (visited[next]) continue;
stack.push(next);
}
}
::std::vector<::std::size_t> buffer;
for (const auto v : this->m_sccs[scc_id]) {
for (const auto e : this->m_rev_graph[v]) {
const auto u = this->m_edges[e].first;
if (this->m_vid2scc[u] == this->m_vid2scc[v]) {
this->m_edges_in_scc[scc_id].push_back(e);
} else {
buffer.push_back(e);
}
}
}
::std::sort(buffer.begin(), buffer.end(), tools::less_by([&](const auto e) { return this->m_vid2scc[this->m_edges[e].first]; }));
for (::std::size_t l = 0, r = 0; l < buffer.size(); l = r) {
const auto u_scc_id = this->m_vid2scc[this->m_edges[buffer[l]].first];
this->m_rev_scc_graph[scc_id].emplace_back(u_scc_id, ::std::vector<::std::size_t>());
for (; r < buffer.size() && this->m_vid2scc[this->m_edges[buffer[l]].first] == this->m_vid2scc[this->m_edges[buffer[r]].first]; ++r);
for (::std::size_t i = l; i < r; ++i) {
this->m_rev_scc_graph[scc_id].back().second.push_back(buffer[i]);
}
}
}
for (::std::size_t v_scc_id = 0; v_scc_id < this->m_sccs.size(); ++v_scc_id) {
for (const auto& [u_scc_id, edge_ids] : this->m_rev_scc_graph[v_scc_id]) {
this->m_scc_graph[u_scc_id].emplace_back(v_scc_id, edge_ids);
}
}
}
this->m_built = true;
}
::std::size_t scc_id(const ::std::size_t i) const {
assert(i < this->size());
assert(this->m_built);
return this->m_vid2scc[i];
}
const ::std::vector<::std::vector<::std::size_t>>& sccs() const {
assert(this->m_built);
return this->m_sccs;
}
const ::std::vector<::std::size_t>& edges_in_scc(const ::std::size_t i) const {
assert(i < this->m_sccs.size());
assert(this->m_built);
return this->m_edges_in_scc[i];
}
const ::std::vector<::std::pair<::std::size_t, ::std::vector<::std::size_t>>>& edges_from_scc(const ::std::size_t i) const {
assert(i < this->m_sccs.size());
assert(this->m_built);
return this->m_scc_graph[i];
}
const ::std::vector<::std::pair<::std::size_t, ::std::vector<::std::size_t>>>& edges_to_scc(const ::std::size_t i) const {
assert(i < this->m_sccs.size());
assert(this->m_built);
return this->m_rev_scc_graph[i];
}
};
}
#endif
#line 1 "tools/scc_graph.hpp"
#include <vector>
#include <utility>
#include <cstddef>
#include <cassert>
#include <stack>
#include <algorithm>
#line 1 "tools/less_by.hpp"
namespace tools {
template <class F>
class less_by {
private:
F selector;
public:
less_by(const F& selector) : selector(selector) {
}
template <class T>
bool operator()(const T& x, const T& y) const {
return selector(x) < selector(y);
}
};
}
#line 11 "tools/scc_graph.hpp"
namespace tools {
class scc_graph {
private:
::std::vector<::std::pair<::std::size_t, ::std::size_t>> m_edges;
::std::vector<::std::vector<::std::size_t>> m_graph;
::std::vector<::std::vector<::std::size_t>> m_rev_graph;
::std::vector<::std::size_t> m_vid2scc;
::std::vector<::std::vector<::std::size_t>> m_sccs;
::std::vector<::std::vector<::std::size_t>> m_edges_in_scc;
::std::vector<::std::vector<::std::pair<::std::size_t, ::std::vector<::std::size_t>>>> m_scc_graph;
::std::vector<::std::vector<::std::pair<::std::size_t, ::std::vector<::std::size_t>>>> m_rev_scc_graph;
bool m_built;
public:
scc_graph() = default;
scc_graph(const ::tools::scc_graph&) = default;
scc_graph(::tools::scc_graph&&) = default;
~scc_graph() = default;
::tools::scc_graph& operator=(const ::tools::scc_graph&) = default;
::tools::scc_graph& operator=(::tools::scc_graph&&) = default;
explicit scc_graph(const ::std::size_t n) : m_graph(n), m_rev_graph(n), m_vid2scc(n), m_built(false) {
}
::std::size_t size() const {
return this->m_graph.size();
}
::std::size_t add_edge(const ::std::size_t from, const ::std::size_t to) {
assert(from < this->size());
assert(to < this->size());
assert(!this->m_built);
const auto edge_id = this->m_edges.size();
this->m_edges.emplace_back(from, to);
this->m_graph[from].push_back(edge_id);
this->m_rev_graph[to].push_back(edge_id);
return edge_id;
}
::std::pair<::std::size_t, ::std::size_t> edge(const ::std::size_t i) const {
assert(i < this->m_edges.size());
return this->m_edges[i];
}
const ::std::vector<::std::size_t>& edges_from(const ::std::size_t i) const {
assert(i < this->size());
return this->m_graph[i];
}
const ::std::vector<::std::size_t>& edges_to(const ::std::size_t i) const {
assert(i < this->size());
return this->m_rev_graph[i];
}
void build() {
assert(!this->m_built);
::std::stack<::std::size_t> ordered_by_dfs;
{
::std::vector<bool> visited(this->size(), false);
::std::stack<::std::pair<bool, ::std::size_t>> stack;
for (::std::size_t i = this->size(); i --> 0;) {
stack.emplace(true, i);
}
while (!stack.empty()) {
const auto [pre, here] = stack.top();
stack.pop();
if (pre) {
if (visited[here]) continue;
visited[here] = true;
stack.emplace(false, here);
for (const auto e : this->m_graph[here]) {
const auto next = this->m_edges[e].second;
if (visited[next]) continue;
stack.emplace(true, next);
}
} else {
ordered_by_dfs.push(here);
}
}
}
{
::std::vector<bool> visited(this->size(), false);
while (!ordered_by_dfs.empty()) {
const auto root = ordered_by_dfs.top();
ordered_by_dfs.pop();
if (visited[root]) continue;
const auto scc_id = this->m_sccs.size();
this->m_sccs.emplace_back();
this->m_edges_in_scc.emplace_back();
this->m_scc_graph.emplace_back();
this->m_rev_scc_graph.emplace_back();
::std::stack<::std::size_t> stack({root});
while (!stack.empty()) {
const auto here = stack.top();
stack.pop();
if (visited[here]) continue;
visited[here] = true;
this->m_vid2scc[here] = scc_id;
this->m_sccs[scc_id].push_back(here);
for (const auto e : this->m_rev_graph[here]) {
const auto next = this->m_edges[e].first;
if (visited[next]) continue;
stack.push(next);
}
}
::std::vector<::std::size_t> buffer;
for (const auto v : this->m_sccs[scc_id]) {
for (const auto e : this->m_rev_graph[v]) {
const auto u = this->m_edges[e].first;
if (this->m_vid2scc[u] == this->m_vid2scc[v]) {
this->m_edges_in_scc[scc_id].push_back(e);
} else {
buffer.push_back(e);
}
}
}
::std::sort(buffer.begin(), buffer.end(), tools::less_by([&](const auto e) { return this->m_vid2scc[this->m_edges[e].first]; }));
for (::std::size_t l = 0, r = 0; l < buffer.size(); l = r) {
const auto u_scc_id = this->m_vid2scc[this->m_edges[buffer[l]].first];
this->m_rev_scc_graph[scc_id].emplace_back(u_scc_id, ::std::vector<::std::size_t>());
for (; r < buffer.size() && this->m_vid2scc[this->m_edges[buffer[l]].first] == this->m_vid2scc[this->m_edges[buffer[r]].first]; ++r);
for (::std::size_t i = l; i < r; ++i) {
this->m_rev_scc_graph[scc_id].back().second.push_back(buffer[i]);
}
}
}
for (::std::size_t v_scc_id = 0; v_scc_id < this->m_sccs.size(); ++v_scc_id) {
for (const auto& [u_scc_id, edge_ids] : this->m_rev_scc_graph[v_scc_id]) {
this->m_scc_graph[u_scc_id].emplace_back(v_scc_id, edge_ids);
}
}
}
this->m_built = true;
}
::std::size_t scc_id(const ::std::size_t i) const {
assert(i < this->size());
assert(this->m_built);
return this->m_vid2scc[i];
}
const ::std::vector<::std::vector<::std::size_t>>& sccs() const {
assert(this->m_built);
return this->m_sccs;
}
const ::std::vector<::std::size_t>& edges_in_scc(const ::std::size_t i) const {
assert(i < this->m_sccs.size());
assert(this->m_built);
return this->m_edges_in_scc[i];
}
const ::std::vector<::std::pair<::std::size_t, ::std::vector<::std::size_t>>>& edges_from_scc(const ::std::size_t i) const {
assert(i < this->m_sccs.size());
assert(this->m_built);
return this->m_scc_graph[i];
}
const ::std::vector<::std::pair<::std::size_t, ::std::vector<::std::size_t>>>& edges_to_scc(const ::std::size_t i) const {
assert(i < this->m_sccs.size());
assert(this->m_built);
return this->m_rev_scc_graph[i];
}
};
}