This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "tools/rotr.hpp"
template <typename T, typename U>
T rotr(T x, int n, U s);
It returns $r$ which satisfies the followings.
<T>
is a built-in integral type<U>
is a built-in integral typestd::numeric_limits<T>::digits
template <typename T, typename U>
T rotr(T x, U s);
It returns $r$ which satisfies the followings.
r.size() == x.size()
x.size()
. For all $i$ such that $0 \leq i < n$, the $(((i - s) \bmod n) + 1)$-th least bit of $r$ is equal to the $(i + 1)$-th least bit of $x$.<T>
is std::bitset
or tools::dynamic_bitset
<U>
is a built-in integral type#ifndef TOOLS_ROTR_HPP
#define TOOLS_ROTR_HPP
#include <cassert>
#include <limits>
#include "tools/mod.hpp"
namespace tools {
template <typename T, typename U>
constexpr T rotr(const T x, const int n, U s) {
assert(0 <= n && n <= ::std::numeric_limits<T>::digits);
const T mask = (n == ::std::numeric_limits<T>::digits ? ::std::numeric_limits<T>::max() : (T(1) << n) - 1);
assert(0 <= x && x <= mask);
if (n == 0) return x;
s = ::tools::mod(s, n);
return ((x << ((n - s) % n)) | (x >> s)) & mask;
}
template <typename T, typename U>
T rotr(const T& x, U s) {
if (x.size() == 0) return x;
s = ::tools::mod(s, x.size());
return (x << ((x.size() - s) % x.size())) | (x >> s);
}
}
#endif
#line 1 "tools/rotr.hpp"
#include <cassert>
#include <limits>
#line 1 "tools/mod.hpp"
#line 5 "tools/mod.hpp"
#include <type_traits>
#line 1 "tools/is_integral.hpp"
#line 5 "tools/is_integral.hpp"
namespace tools {
template <typename T>
struct is_integral : ::std::is_integral<T> {};
template <typename T>
inline constexpr bool is_integral_v = ::tools::is_integral<T>::value;
}
#line 7 "tools/mod.hpp"
namespace tools {
template <typename M, typename N> requires (
::tools::is_integral_v<M> && !::std::is_same_v<::std::remove_cv_t<M>, bool> &&
::tools::is_integral_v<N> && !::std::is_same_v<::std::remove_cv_t<N>, bool>)
constexpr ::std::common_type_t<M, N> mod(const M a, const N b) noexcept {
assert(b != 0);
using UM = ::std::make_unsigned_t<M>;
using UN = ::std::make_unsigned_t<N>;
const UM ua = a >= 0 ? a : static_cast<UM>(-(a + 1)) + 1;
const UN ub = b >= 0 ? b : static_cast<UN>(-(b + 1)) + 1;
auto r = ua % ub;
if (a < 0 && r > 0) {
r = ub - r;
}
return r;
}
}
#line 7 "tools/rotr.hpp"
namespace tools {
template <typename T, typename U>
constexpr T rotr(const T x, const int n, U s) {
assert(0 <= n && n <= ::std::numeric_limits<T>::digits);
const T mask = (n == ::std::numeric_limits<T>::digits ? ::std::numeric_limits<T>::max() : (T(1) << n) - 1);
assert(0 <= x && x <= mask);
if (n == 0) return x;
s = ::tools::mod(s, n);
return ((x << ((n - s) % n)) | (x >> s)) & mask;
}
template <typename T, typename U>
T rotr(const T& x, U s) {
if (x.size() == 0) return x;
s = ::tools::mod(s, x.size());
return (x << ((x.size() - s) % x.size())) | (x >> s);
}
}