This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "tools/quo.hpp"
template <typename M, typename N>
constexpr std::common_type_t<M, N> quo(M a, N b) noexcept;
Given $a$ and $b (\neq 0)$, a pair of values $(q, r)$ satisfying the following conditions is uniquely determined.
\[\begin{align*} \left\{\begin{array}{l} a = qb + r\\ q \in \mathbb{Z}\\ 0 \leq r < |b| \end{array}\right.& \end{align*}\]It returns $q$. Note that $q$ is also written as follows.
\[\begin{align*} \left\{\begin{array}{ll} \lfloor \frac{a}{b} \rfloor & \text{(if $b > 0$)}\\ \lceil \frac{a}{b} \rceil & \text{(if $b < 0$)} \end{array}\right.& \end{align*}\]<M>
is a built-in integral type, tools::int128_t
or tools::uint128_t
.<N>
is a built-in integral type, tools::int128_t
or tools::uint128_t
.std::common_type_t<M, N>
.#ifndef TOOLS_QUO_H
#define TOOLS_QUO_H
#include <cassert>
#include <type_traits>
#include "tools/is_integral.hpp"
namespace tools {
template <typename M, typename N> requires (
::tools::is_integral_v<M> && !::std::is_same_v<::std::remove_cv_t<M>, bool> &&
::tools::is_integral_v<N> && !::std::is_same_v<::std::remove_cv_t<N>, bool>)
constexpr ::std::common_type_t<M, N> quo(const M a, const N b) noexcept {
assert(b != 0);
if (a >= 0) {
return a / b;
} else {
if (b >= 0) {
return (a + 1) / b - 1;
} else {
return (a + 1) / b + 1;
}
}
}
}
#endif
#line 1 "tools/quo.hpp"
#include <cassert>
#include <type_traits>
#line 1 "tools/is_integral.hpp"
#line 5 "tools/is_integral.hpp"
namespace tools {
template <typename T>
struct is_integral : ::std::is_integral<T> {};
template <typename T>
inline constexpr bool is_integral_v = ::tools::is_integral<T>::value;
}
#line 7 "tools/quo.hpp"
namespace tools {
template <typename M, typename N> requires (
::tools::is_integral_v<M> && !::std::is_same_v<::std::remove_cv_t<M>, bool> &&
::tools::is_integral_v<N> && !::std::is_same_v<::std::remove_cv_t<N>, bool>)
constexpr ::std::common_type_t<M, N> quo(const M a, const N b) noexcept {
assert(b != 0);
if (a >= 0) {
return a / b;
} else {
if (b >= 0) {
return (a + 1) / b - 1;
} else {
return (a + 1) / b + 1;
}
}
}
}