This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "tools/preset_segtree_beats.hpp"
#ifndef TOOLS_PRESET_SEGTREE_BEATS_HPP
#define TOOLS_PRESET_SEGTREE_BEATS_HPP
#include <cassert>
#include <algorithm>
#include <limits>
#include <vector>
#include "tools/segtree_beats.hpp"
// Source: https://github.com/hitonanode/cplib-cpp/blob/5dc514109dcc62c00c9b96b044b0e57d76ac7e9b/segmenttree/acl_beats.hpp
// License: MIT
// Author: hitonanode
// MIT License
//
// Copyright (c) 2019 Ryotaro Sato
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
namespace tools {
namespace detail {
namespace preset_segtree_beats {
template <typename T>
T second_lowest(const T a, const T a2, const T c, const T c2) {
assert(a <= a2); // a < a2 or a == a2 == INF
assert(c <= c2); // c < c2 or c == c2 == -INF
return a == c ? ::std::min(a2, c2) : a2 <= c ? a2 : c2 <= a ? c2 : ::std::max(a, c);
}
template <typename T>
T second_highest(const T a, const T a2, const T b, const T b2) {
assert(a >= a2); // a > a2 or a == a2 == -INF
assert(b >= b2); // b > b2 or b == b2 == INF
return a == b ? ::std::max(a2, b2) : a2 >= b ? a2 : b2 >= a ? b2 : ::std::min(a, b);
}
template <typename T>
struct S {
T lo, hi, lo2, hi2, sum, sz, nlo, nhi;
bool fail;
S():
lo(::std::numeric_limits<T>::max()),
hi(::std::numeric_limits<T>::min()),
lo2(::std::numeric_limits<T>::max()),
hi2(::std::numeric_limits<T>::min()),
sum(0),
sz(0),
nlo(0),
nhi(0),
fail(false) {
}
S(const T x, const T sz_):
lo(x),
hi(x),
lo2(::std::numeric_limits<T>::max()),
hi2(::std::numeric_limits<T>::min()),
sum(x * sz_),
sz(sz_),
nlo(sz_),
nhi(sz_),
fail(false) {
}
};
template <typename T>
S<T> op(const S<T>& l, const S<T>& r) {
if (l.lo > l.hi) return r;
if (r.lo > r.hi) return l;
S<T> ret;
ret.lo = ::std::min(l.lo, r.lo);
ret.hi = ::std::max(l.hi, r.hi);
ret.lo2 = second_lowest(l.lo, l.lo2, r.lo, r.lo2);
ret.hi2 = second_highest(l.hi, l.hi2, r.hi, r.hi2);
ret.sum = l.sum + r.sum;
ret.sz = l.sz + r.sz;
ret.nlo = l.nlo * (l.lo <= r.lo) + r.nlo * (r.lo <= l.lo);
ret.nhi = l.nhi * (l.hi >= r.hi) + r.nhi * (r.hi >= l.hi);
return ret;
}
template <typename T>
S<T> e() {
return S<T>();
}
template <typename T>
struct F {
T lb, ub, bias;
F():
lb(::std::numeric_limits<T>::min()),
ub(::std::numeric_limits<T>::max()),
bias(0) {
}
F(const T chmax_, const T chmin_, const T add):
lb(chmax_),
ub(chmin_),
bias(add) {
}
static F<T> chmin(const T x) {
return F<T>(::std::numeric_limits<T>::min(), x, 0);
}
static F<T> chmax(const T x) {
return F<T>(x, ::std::numeric_limits<T>::max(), 0);
}
static F<T> add(const T x) {
return F<T>(::std::numeric_limits<T>::min(), ::std::numeric_limits<T>::max(), x);
}
};
template <typename T>
S<T> mapping(const F<T>& f, S<T> x) {
if (x.sz == 0) return e<T>();
// f の作用後 x の要素が 1 種類だけになるケース
if (x.lo == x.hi || f.lb == f.ub || f.lb >= x.hi || f.ub <= x.lo) {
return S<T>(::std::clamp(x.lo, f.lb, f.ub) + f.bias, x.sz);
}
// 2 種類 -> 1 種類
if (x.lo2 == x.hi) {
x.lo = x.hi2 = ::std::max(x.lo, f.lb) + f.bias;
x.hi = x.lo2 = ::std::min(x.hi, f.ub) + f.bias;
x.sum = x.lo * x.nlo + x.hi * x.nhi;
return x;
}
// lo と lo2, hi と hi2 が潰れないケース
if (f.lb < x.lo2 && f.ub > x.hi2) {
T nxt_lo = std::max(x.lo, f.lb);
T nxt_hi = std::min(x.hi, f.ub);
x.sum += (nxt_lo - x.lo) * x.nlo - (x.hi - nxt_hi) * x.nhi + f.bias * x.sz;
x.lo = nxt_lo + f.bias;
x.hi = nxt_hi + f.bias;
x.lo2 += f.bias;
x.hi2 += f.bias;
return x;
}
x.fail = true;
return x;
}
template <typename T>
F<T> composition(const F<T>& fnew, const F<T>& fold) {
F<T> ret;
ret.lb = fold.lb;
if (::std::numeric_limits<T>::min() < ret.lb && ret.lb < ::std::numeric_limits<T>::max()) ret.lb += fold.bias;
ret.lb = ::std::clamp(ret.lb, fnew.lb, fnew.ub);
if (::std::numeric_limits<T>::min() < ret.lb && ret.lb < ::std::numeric_limits<T>::max()) ret.lb -= fold.bias;
ret.ub = fold.ub;
if (::std::numeric_limits<T>::min() < ret.ub && ret.ub < ::std::numeric_limits<T>::max()) ret.ub += fold.bias;
ret.ub = ::std::clamp(ret.ub, fnew.lb, fnew.ub);
if (::std::numeric_limits<T>::min() < ret.ub && ret.ub < ::std::numeric_limits<T>::max()) ret.ub -= fold.bias;
ret.bias = fold.bias + fnew.bias;
return ret;
}
template <typename T>
F<T> id() {
return F<T>();
}
template <typename T>
using Base = ::tools::segtree_beats<S<T>, op<T>, e<T>, F<T>, mapping<T>, composition<T>, id<T>>;
}
}
template <typename T>
class preset_segtree_beats {
private:
::tools::detail::preset_segtree_beats::Base<T> m_base;
using S = ::tools::detail::preset_segtree_beats::S<T>;
using F = ::tools::detail::preset_segtree_beats::F<T>;
public:
preset_segtree_beats(const ::tools::preset_segtree_beats<T>&) = default;
preset_segtree_beats(::tools::preset_segtree_beats<T>&&) = default;
~preset_segtree_beats() = default;
::tools::preset_segtree_beats<T>& operator=(const ::tools::preset_segtree_beats<T>&) = default;
::tools::preset_segtree_beats<T>& operator=(::tools::preset_segtree_beats<T>&&) = default;
explicit preset_segtree_beats(const int n) : m_base(n) {
}
template <typename InputIterator>
preset_segtree_beats(const InputIterator begin, const InputIterator end) : m_base([&]() {
::std::vector<S> v;
for (auto it = begin; it != end; ++it) {
v.emplace_back(*it, 1);
}
return v;
}()) {
}
explicit preset_segtree_beats(const ::std::vector<T>& v) : preset_segtree_beats(v.begin(), v.end()) {
}
void set(const int p, const T x) {
this->m_base.set(p, S(x, 1));
}
T get(const int p) {
return this->m_base.get(p).sum;
}
T min(const int l, const int r) {
return this->m_base.prod(l, r).lo;
}
T max(const int l, const int r) {
return this->m_base.prod(l, r).hi;
}
T sum(const int l, const int r) {
return this->m_base.prod(l, r).sum;
}
T all_min() {
return this->m_base.all_prod().lo;
}
T all_max() {
return this->m_base.all_prod().hi;
}
T all_sum() {
return this->m_base.all_prod().sum;
}
void chmin(const int p, const T f) {
this->m_base.apply(p, F::chmin(f));
}
void chmax(const int p, const T f) {
this->m_base.apply(p, F::chmax(f));
}
void add(const int p, const T f) {
this->m_base.apply(p, F::add(f));
}
void chmin(const int l, const int r, const T f) {
this->m_base.apply(l, r, F::chmin(f));
}
void chmax(const int l, const int r, const T f) {
this->m_base.apply(l, r, F::chmax(f));
}
void add(const int l, const int r, const T f) {
this->m_base.apply(l, r, F::add(f));
}
template <class G>
int max_right(const int l, const G g) {
return this->m_base.max_right(l, g);
}
template <class G>
int min_left(const int r, const G g) {
return this->m_base.min_left(r, g);
}
};
}
#endif
#line 1 "tools/preset_segtree_beats.hpp"
#include <cassert>
#include <algorithm>
#include <limits>
#include <vector>
#line 1 "tools/segtree_beats.hpp"
#line 1 "lib/ac-library/atcoder/lazysegtree.hpp"
#line 6 "lib/ac-library/atcoder/lazysegtree.hpp"
#include <functional>
#line 8 "lib/ac-library/atcoder/lazysegtree.hpp"
#line 1 "lib/ac-library/atcoder/internal_bit.hpp"
#ifdef _MSC_VER
#include <intrin.h>
#endif
#if __cplusplus >= 202002L
#include <bit>
#endif
namespace atcoder {
namespace internal {
#if __cplusplus >= 202002L
using std::bit_ceil;
#else
// @return same with std::bit::bit_ceil
unsigned int bit_ceil(unsigned int n) {
unsigned int x = 1;
while (x < (unsigned int)(n)) x *= 2;
return x;
}
#endif
// @param n `1 <= n`
// @return same with std::bit::countr_zero
int countr_zero(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
// @param n `1 <= n`
// @return same with std::bit::countr_zero
constexpr int countr_zero_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
} // namespace internal
} // namespace atcoder
#line 10 "lib/ac-library/atcoder/lazysegtree.hpp"
namespace atcoder {
#if __cplusplus >= 201703L
template <class S,
auto op,
auto e,
class F,
auto mapping,
auto composition,
auto id>
struct lazy_segtree {
static_assert(std::is_convertible_v<decltype(op), std::function<S(S, S)>>,
"op must work as S(S, S)");
static_assert(std::is_convertible_v<decltype(e), std::function<S()>>,
"e must work as S()");
static_assert(
std::is_convertible_v<decltype(mapping), std::function<S(F, S)>>,
"mapping must work as F(F, S)");
static_assert(
std::is_convertible_v<decltype(composition), std::function<F(F, F)>>,
"compostiion must work as F(F, F)");
static_assert(std::is_convertible_v<decltype(id), std::function<F()>>,
"id must work as F()");
#else
template <class S,
S (*op)(S, S),
S (*e)(),
class F,
S (*mapping)(F, S),
F (*composition)(F, F),
F (*id)()>
struct lazy_segtree {
#endif
public:
lazy_segtree() : lazy_segtree(0) {}
explicit lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
explicit lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
size = (int)internal::bit_ceil((unsigned int)(_n));
log = internal::countr_zero((unsigned int)size);
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)> int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G> int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)> int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G> int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
protected:
int _n, size, log;
std::vector<S> d;
std::vector<F> lz;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
virtual void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
} // namespace atcoder
#line 5 "tools/segtree_beats.hpp"
// Source: https://github.com/hitonanode/cplib-cpp/blob/94a544f88242fec39b4dd434ed379c23aa4dd99b/segmenttree/acl_beats.hpp
// License: MIT
// Author: hitonanode
// MIT License
//
// Copyright (c) 2019 Ryotaro Sato
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
namespace tools {
template <class S, auto op, auto e, class F, auto mapping, auto composition, auto id>
class segtree_beats : public ::atcoder::lazy_segtree<S, op, e, F, mapping, composition, id> {
using Base = ::atcoder::lazy_segtree<S, op, e, F, mapping, composition, id>;
using Base::lazy_segtree;
void all_apply(int k, F f) override {
Base::d[k] = mapping(f, Base::d[k]);
if (k < Base::size) {
Base::lz[k] = composition(f, Base::lz[k]);
if (Base::d[k].fail) Base::push(k), Base::update(k);
}
}
};
}
#line 9 "tools/preset_segtree_beats.hpp"
// Source: https://github.com/hitonanode/cplib-cpp/blob/5dc514109dcc62c00c9b96b044b0e57d76ac7e9b/segmenttree/acl_beats.hpp
// License: MIT
// Author: hitonanode
// MIT License
//
// Copyright (c) 2019 Ryotaro Sato
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
namespace tools {
namespace detail {
namespace preset_segtree_beats {
template <typename T>
T second_lowest(const T a, const T a2, const T c, const T c2) {
assert(a <= a2); // a < a2 or a == a2 == INF
assert(c <= c2); // c < c2 or c == c2 == -INF
return a == c ? ::std::min(a2, c2) : a2 <= c ? a2 : c2 <= a ? c2 : ::std::max(a, c);
}
template <typename T>
T second_highest(const T a, const T a2, const T b, const T b2) {
assert(a >= a2); // a > a2 or a == a2 == -INF
assert(b >= b2); // b > b2 or b == b2 == INF
return a == b ? ::std::max(a2, b2) : a2 >= b ? a2 : b2 >= a ? b2 : ::std::min(a, b);
}
template <typename T>
struct S {
T lo, hi, lo2, hi2, sum, sz, nlo, nhi;
bool fail;
S():
lo(::std::numeric_limits<T>::max()),
hi(::std::numeric_limits<T>::min()),
lo2(::std::numeric_limits<T>::max()),
hi2(::std::numeric_limits<T>::min()),
sum(0),
sz(0),
nlo(0),
nhi(0),
fail(false) {
}
S(const T x, const T sz_):
lo(x),
hi(x),
lo2(::std::numeric_limits<T>::max()),
hi2(::std::numeric_limits<T>::min()),
sum(x * sz_),
sz(sz_),
nlo(sz_),
nhi(sz_),
fail(false) {
}
};
template <typename T>
S<T> op(const S<T>& l, const S<T>& r) {
if (l.lo > l.hi) return r;
if (r.lo > r.hi) return l;
S<T> ret;
ret.lo = ::std::min(l.lo, r.lo);
ret.hi = ::std::max(l.hi, r.hi);
ret.lo2 = second_lowest(l.lo, l.lo2, r.lo, r.lo2);
ret.hi2 = second_highest(l.hi, l.hi2, r.hi, r.hi2);
ret.sum = l.sum + r.sum;
ret.sz = l.sz + r.sz;
ret.nlo = l.nlo * (l.lo <= r.lo) + r.nlo * (r.lo <= l.lo);
ret.nhi = l.nhi * (l.hi >= r.hi) + r.nhi * (r.hi >= l.hi);
return ret;
}
template <typename T>
S<T> e() {
return S<T>();
}
template <typename T>
struct F {
T lb, ub, bias;
F():
lb(::std::numeric_limits<T>::min()),
ub(::std::numeric_limits<T>::max()),
bias(0) {
}
F(const T chmax_, const T chmin_, const T add):
lb(chmax_),
ub(chmin_),
bias(add) {
}
static F<T> chmin(const T x) {
return F<T>(::std::numeric_limits<T>::min(), x, 0);
}
static F<T> chmax(const T x) {
return F<T>(x, ::std::numeric_limits<T>::max(), 0);
}
static F<T> add(const T x) {
return F<T>(::std::numeric_limits<T>::min(), ::std::numeric_limits<T>::max(), x);
}
};
template <typename T>
S<T> mapping(const F<T>& f, S<T> x) {
if (x.sz == 0) return e<T>();
// f の作用後 x の要素が 1 種類だけになるケース
if (x.lo == x.hi || f.lb == f.ub || f.lb >= x.hi || f.ub <= x.lo) {
return S<T>(::std::clamp(x.lo, f.lb, f.ub) + f.bias, x.sz);
}
// 2 種類 -> 1 種類
if (x.lo2 == x.hi) {
x.lo = x.hi2 = ::std::max(x.lo, f.lb) + f.bias;
x.hi = x.lo2 = ::std::min(x.hi, f.ub) + f.bias;
x.sum = x.lo * x.nlo + x.hi * x.nhi;
return x;
}
// lo と lo2, hi と hi2 が潰れないケース
if (f.lb < x.lo2 && f.ub > x.hi2) {
T nxt_lo = std::max(x.lo, f.lb);
T nxt_hi = std::min(x.hi, f.ub);
x.sum += (nxt_lo - x.lo) * x.nlo - (x.hi - nxt_hi) * x.nhi + f.bias * x.sz;
x.lo = nxt_lo + f.bias;
x.hi = nxt_hi + f.bias;
x.lo2 += f.bias;
x.hi2 += f.bias;
return x;
}
x.fail = true;
return x;
}
template <typename T>
F<T> composition(const F<T>& fnew, const F<T>& fold) {
F<T> ret;
ret.lb = fold.lb;
if (::std::numeric_limits<T>::min() < ret.lb && ret.lb < ::std::numeric_limits<T>::max()) ret.lb += fold.bias;
ret.lb = ::std::clamp(ret.lb, fnew.lb, fnew.ub);
if (::std::numeric_limits<T>::min() < ret.lb && ret.lb < ::std::numeric_limits<T>::max()) ret.lb -= fold.bias;
ret.ub = fold.ub;
if (::std::numeric_limits<T>::min() < ret.ub && ret.ub < ::std::numeric_limits<T>::max()) ret.ub += fold.bias;
ret.ub = ::std::clamp(ret.ub, fnew.lb, fnew.ub);
if (::std::numeric_limits<T>::min() < ret.ub && ret.ub < ::std::numeric_limits<T>::max()) ret.ub -= fold.bias;
ret.bias = fold.bias + fnew.bias;
return ret;
}
template <typename T>
F<T> id() {
return F<T>();
}
template <typename T>
using Base = ::tools::segtree_beats<S<T>, op<T>, e<T>, F<T>, mapping<T>, composition<T>, id<T>>;
}
}
template <typename T>
class preset_segtree_beats {
private:
::tools::detail::preset_segtree_beats::Base<T> m_base;
using S = ::tools::detail::preset_segtree_beats::S<T>;
using F = ::tools::detail::preset_segtree_beats::F<T>;
public:
preset_segtree_beats(const ::tools::preset_segtree_beats<T>&) = default;
preset_segtree_beats(::tools::preset_segtree_beats<T>&&) = default;
~preset_segtree_beats() = default;
::tools::preset_segtree_beats<T>& operator=(const ::tools::preset_segtree_beats<T>&) = default;
::tools::preset_segtree_beats<T>& operator=(::tools::preset_segtree_beats<T>&&) = default;
explicit preset_segtree_beats(const int n) : m_base(n) {
}
template <typename InputIterator>
preset_segtree_beats(const InputIterator begin, const InputIterator end) : m_base([&]() {
::std::vector<S> v;
for (auto it = begin; it != end; ++it) {
v.emplace_back(*it, 1);
}
return v;
}()) {
}
explicit preset_segtree_beats(const ::std::vector<T>& v) : preset_segtree_beats(v.begin(), v.end()) {
}
void set(const int p, const T x) {
this->m_base.set(p, S(x, 1));
}
T get(const int p) {
return this->m_base.get(p).sum;
}
T min(const int l, const int r) {
return this->m_base.prod(l, r).lo;
}
T max(const int l, const int r) {
return this->m_base.prod(l, r).hi;
}
T sum(const int l, const int r) {
return this->m_base.prod(l, r).sum;
}
T all_min() {
return this->m_base.all_prod().lo;
}
T all_max() {
return this->m_base.all_prod().hi;
}
T all_sum() {
return this->m_base.all_prod().sum;
}
void chmin(const int p, const T f) {
this->m_base.apply(p, F::chmin(f));
}
void chmax(const int p, const T f) {
this->m_base.apply(p, F::chmax(f));
}
void add(const int p, const T f) {
this->m_base.apply(p, F::add(f));
}
void chmin(const int l, const int r, const T f) {
this->m_base.apply(l, r, F::chmin(f));
}
void chmax(const int l, const int r, const T f) {
this->m_base.apply(l, r, F::chmax(f));
}
void add(const int l, const int r, const T f) {
this->m_base.apply(l, r, F::add(f));
}
template <class G>
int max_right(const int l, const G g) {
return this->m_base.max_right(l, g);
}
template <class G>
int min_left(const int r, const G g) {
return this->m_base.min_left(r, g);
}
};
}