This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "tools/pow_mod_cache.hpp"
It caches $b^n \pmod{M}$ and returns them in $O(1)$ amortized time.
(1)
pow_mod_cache<M> cache(M b);
(2)
template <typename Z>
pow_mod_cache<M> cache(Z b);
It creates an empty cache to store $b^n \pmod{M}$.
<M>
is atcoder::static_modint
, atcoder::dynamic_modint
or tools::modint_for_rolling_hash
<Z>
is an integral type.M cache.operator[](long long n);
It returns $b^n \pmod{M}$.
M cache.sum(long long l, long long r);
It returns
\[\begin{align*} \left\{\begin{array}{ll} \sum_{i = l}^{r - 1} b^i \pmod{M} & \text{(if $l < r$)}\\ 0 \pmod{M} & \text{(otherwise)} \end{array}\right.& \end{align*}\]#ifndef TOOLS_POW_MOD_CACHE_HPP
#define TOOLS_POW_MOD_CACHE_HPP
#include <vector>
#include <optional>
#include <utility>
#include <type_traits>
#include <cstddef>
#include <algorithm>
#include <iterator>
#include <cassert>
#include "tools/find_cycle.hpp"
#include "tools/mod.hpp"
#include "tools/floor.hpp"
#include "tools/ceil.hpp"
namespace tools {
template <class M>
class pow_mod_cache {
::std::vector<M> m_pow;
::std::vector<M> m_cumsum;
::std::vector<M> m_inv_pow;
::std::vector<M> m_inv_cumsum;
::std::optional<::std::pair<long long, long long>> m_period;
public:
pow_mod_cache() = default;
explicit pow_mod_cache(const M base) : m_pow({M(1), base}), m_cumsum({M::raw(0)}), m_inv_pow({M(1)}), m_inv_cumsum({M::raw(0)}) {
if (base == M(-1)) {
if (M::mod() > 2) {
this->m_period = ::std::make_pair(0LL, 2LL);
} else {
this->m_period = ::std::make_pair(0LL, 1LL);
this->m_pow.resize(1);
}
this->m_inv_pow.clear();
this->m_inv_cumsum.clear();
}
}
template <typename Z, ::std::enable_if_t<::std::is_integral_v<Z>, ::std::nullptr_t> = nullptr>
explicit pow_mod_cache(const Z base) : pow_mod_cache(M(base)) {
}
M operator[](const long long n) {
if (!this->m_period) {
if (::std::max<long long>(::std::ssize(this->m_pow) - 1, n) - ::std::min<long long>(n, -(::std::ssize(this->m_inv_pow) - 1)) + 1 < M::mod() - 1) {
if (n >= 0) {
const long long size = ::std::ssize(this->m_pow);
this->m_pow.resize(::std::max(size, n + 1));
for (long long i = size; i < ::std::ssize(this->m_pow); ++i) {
this->m_pow[i] = this->m_pow[i - 1] * this->m_pow[1];
}
return this->m_pow[n];
} else {
if (this->m_inv_pow.size() == 1) {
this->m_inv_pow.push_back(this->m_pow[1].inv());
}
const long long size = ::std::ssize(this->m_inv_pow);
this->m_inv_pow.resize(::std::max(size, -n + 1));
for (long long i = size; i < ::std::ssize(this->m_inv_pow); ++i) {
this->m_inv_pow[i] = this->m_inv_pow[i - 1] * this->m_inv_pow[1];
}
return this->m_inv_pow[-n];
}
}
this->m_period = ::tools::find_cycle(this->m_pow[0], [&](const M& prev) { return prev * this->m_pow[1]; });
const long long size = ::std::ssize(this->m_pow);
this->m_pow.resize(this->m_period->first + this->m_period->second);
for (long long i = size; i < ::std::ssize(this->m_pow); ++i) {
this->m_pow[i] = this->m_pow[i - 1] * this->m_pow[1];
}
this->m_inv_pow.clear();
this->m_inv_cumsum.clear();
}
if (this->m_period->first == 0) {
return this->m_pow[::tools::mod(n, this->m_period->second)];
} else {
assert(n >= 0);
if (n < this->m_period->first + this->m_period->second) {
return this->m_pow[n];
} else {
return this->m_pow[(n - this->m_period->first) % this->m_period->second + this->m_period->first];
}
}
}
M sum(const long long l, const long long r) {
if (l >= r) return M::raw(0);
(*this)[r - 1];
(*this)[l];
{
const long long size = ::std::ssize(this->m_cumsum);
this->m_cumsum.resize(this->m_pow.size() + 1);
for (long long i = size; i < ::std::ssize(this->m_cumsum); ++i) {
this->m_cumsum[i] = this->m_cumsum[i - 1] + this->m_pow[i - 1];
}
}
if (!this->m_period) {
const long long size = ::std::ssize(this->m_inv_cumsum);
this->m_inv_cumsum.resize(this->m_inv_pow.size() + 1);
for (long long i = size; i < ::std::ssize(this->m_inv_cumsum); ++i) {
this->m_inv_cumsum[i] = this->m_inv_cumsum[i - 1] + this->m_pow[i - 1];
}
if (l >= 0) {
return this->m_cumsum[r] - this->m_cumsum[l];
} else if (r <= 0) {
return this->m_inv_cumsum[-l] - this->m_inv_cumsum[-r];
} else {
return (this->m_inv_cumsum[-l] - this->m_inv_cumsum[1]) + (this->m_cumsum[r] - this->m_cumsum[0]);
}
}
static const auto cumsum = [&](const long long ll, const long long rr) {
return this->m_cumsum[rr] - this->m_cumsum[ll];
};
if (l >= 0) {
static const auto f = [&](const long long x) {
if (x <= this->m_period->first + this->m_period->second) {
return cumsum(0, x);
} else {
return cumsum(0, this->m_period->first) +
cumsum(this->m_period->first, this->m_period->first + this->m_period->second) * ((x - this->m_period->first) / this->m_period->second) +
cumsum(this->m_period->first, (x - this->m_period->first) % this->m_period->second + this->m_period->first);
}
};
return f(r) - f(l);
} else {
const auto& n = this->m_period->second;
return cumsum(::tools::mod(l, n), n) + cumsum(0, ::tools::mod(r, n)) + cumsum(0, n) * M(::tools::floor(r, n) - ::tools::ceil(l, n));
}
}
};
}
#endif
#line 1 "tools/pow_mod_cache.hpp"
#include <vector>
#include <optional>
#include <utility>
#include <type_traits>
#include <cstddef>
#include <algorithm>
#include <iterator>
#include <cassert>
#line 1 "tools/find_cycle.hpp"
#line 5 "tools/find_cycle.hpp"
namespace tools {
template <typename T, typename F>
::std::pair<long long, long long> find_cycle(const T& seed, const F& f) {
auto i = 1LL;
auto j = 2LL;
T x = f(seed);
T y = f(f(seed));
for (; x != y; ++i, j += 2, x = f(x), y = f(f(y)));
i = 0;
x = seed;
for (; x != y; ++i, ++j, x = f(x), y = f(y));
const auto head = i;
++i;
j = i + 1;
x = f(x);
y = f(f(y));
for (; x != y; ++i, j += 2, x = f(x), y = f(f(y)));
const auto cycle = j - i;
return ::std::make_pair(head, cycle);
}
}
#line 1 "tools/mod.hpp"
#line 1 "tools/is_integral.hpp"
#line 5 "tools/is_integral.hpp"
namespace tools {
template <typename T>
struct is_integral : ::std::is_integral<T> {};
template <typename T>
inline constexpr bool is_integral_v = ::tools::is_integral<T>::value;
}
#line 7 "tools/mod.hpp"
namespace tools {
template <typename M, typename N> requires (
::tools::is_integral_v<M> && !::std::is_same_v<::std::remove_cv_t<M>, bool> &&
::tools::is_integral_v<N> && !::std::is_same_v<::std::remove_cv_t<N>, bool>)
constexpr ::std::common_type_t<M, N> mod(const M a, const N b) noexcept {
assert(b != 0);
using UM = ::std::make_unsigned_t<M>;
using UN = ::std::make_unsigned_t<N>;
const UM ua = a >= 0 ? a : static_cast<UM>(-(a + 1)) + 1;
const UN ub = b >= 0 ? b : static_cast<UN>(-(b + 1)) + 1;
auto r = ua % ub;
if (a < 0 && r > 0) {
r = ub - r;
}
return r;
}
}
#line 1 "tools/floor.hpp"
#line 7 "tools/floor.hpp"
namespace tools {
template <typename M, typename N> requires (
::tools::is_integral_v<M> && !::std::is_same_v<::std::remove_cv_t<M>, bool> &&
::tools::is_integral_v<N> && !::std::is_same_v<::std::remove_cv_t<N>, bool>)
constexpr ::std::common_type_t<M, N> floor(const M x, const N y) noexcept {
assert(y != 0);
if (y >= 0) {
if (x >= 0) {
return x / y;
} else {
return (x + 1) / y - 1;
}
} else {
if (x > 0) {
return (x - 1) / y - 1;
} else {
return x / y;
}
}
}
}
#line 1 "tools/ceil.hpp"
#line 1 "tools/is_unsigned.hpp"
#line 5 "tools/is_unsigned.hpp"
namespace tools {
template <typename T>
struct is_unsigned : ::std::is_unsigned<T> {};
template <typename T>
inline constexpr bool is_unsigned_v = ::tools::is_unsigned<T>::value;
}
#line 8 "tools/ceil.hpp"
namespace tools {
template <typename M, typename N> requires (
::tools::is_integral_v<M> && !::std::is_same_v<::std::remove_cv_t<M>, bool> &&
::tools::is_integral_v<N> && !::std::is_same_v<::std::remove_cv_t<N>, bool>)
constexpr ::std::common_type_t<M, N> ceil(const M x, const N y) noexcept {
assert(y != 0);
if (y >= 0) {
if (x > 0) {
return (x - 1) / y + 1;
} else {
if constexpr (::tools::is_unsigned_v<::std::common_type_t<M, N>>) {
return 0;
} else {
return x / y;
}
}
} else {
if (x >= 0) {
if constexpr (::tools::is_unsigned_v<::std::common_type_t<M, N>>) {
return 0;
} else {
return x / y;
}
} else {
return (x + 1) / y + 1;
}
}
}
}
#line 16 "tools/pow_mod_cache.hpp"
namespace tools {
template <class M>
class pow_mod_cache {
::std::vector<M> m_pow;
::std::vector<M> m_cumsum;
::std::vector<M> m_inv_pow;
::std::vector<M> m_inv_cumsum;
::std::optional<::std::pair<long long, long long>> m_period;
public:
pow_mod_cache() = default;
explicit pow_mod_cache(const M base) : m_pow({M(1), base}), m_cumsum({M::raw(0)}), m_inv_pow({M(1)}), m_inv_cumsum({M::raw(0)}) {
if (base == M(-1)) {
if (M::mod() > 2) {
this->m_period = ::std::make_pair(0LL, 2LL);
} else {
this->m_period = ::std::make_pair(0LL, 1LL);
this->m_pow.resize(1);
}
this->m_inv_pow.clear();
this->m_inv_cumsum.clear();
}
}
template <typename Z, ::std::enable_if_t<::std::is_integral_v<Z>, ::std::nullptr_t> = nullptr>
explicit pow_mod_cache(const Z base) : pow_mod_cache(M(base)) {
}
M operator[](const long long n) {
if (!this->m_period) {
if (::std::max<long long>(::std::ssize(this->m_pow) - 1, n) - ::std::min<long long>(n, -(::std::ssize(this->m_inv_pow) - 1)) + 1 < M::mod() - 1) {
if (n >= 0) {
const long long size = ::std::ssize(this->m_pow);
this->m_pow.resize(::std::max(size, n + 1));
for (long long i = size; i < ::std::ssize(this->m_pow); ++i) {
this->m_pow[i] = this->m_pow[i - 1] * this->m_pow[1];
}
return this->m_pow[n];
} else {
if (this->m_inv_pow.size() == 1) {
this->m_inv_pow.push_back(this->m_pow[1].inv());
}
const long long size = ::std::ssize(this->m_inv_pow);
this->m_inv_pow.resize(::std::max(size, -n + 1));
for (long long i = size; i < ::std::ssize(this->m_inv_pow); ++i) {
this->m_inv_pow[i] = this->m_inv_pow[i - 1] * this->m_inv_pow[1];
}
return this->m_inv_pow[-n];
}
}
this->m_period = ::tools::find_cycle(this->m_pow[0], [&](const M& prev) { return prev * this->m_pow[1]; });
const long long size = ::std::ssize(this->m_pow);
this->m_pow.resize(this->m_period->first + this->m_period->second);
for (long long i = size; i < ::std::ssize(this->m_pow); ++i) {
this->m_pow[i] = this->m_pow[i - 1] * this->m_pow[1];
}
this->m_inv_pow.clear();
this->m_inv_cumsum.clear();
}
if (this->m_period->first == 0) {
return this->m_pow[::tools::mod(n, this->m_period->second)];
} else {
assert(n >= 0);
if (n < this->m_period->first + this->m_period->second) {
return this->m_pow[n];
} else {
return this->m_pow[(n - this->m_period->first) % this->m_period->second + this->m_period->first];
}
}
}
M sum(const long long l, const long long r) {
if (l >= r) return M::raw(0);
(*this)[r - 1];
(*this)[l];
{
const long long size = ::std::ssize(this->m_cumsum);
this->m_cumsum.resize(this->m_pow.size() + 1);
for (long long i = size; i < ::std::ssize(this->m_cumsum); ++i) {
this->m_cumsum[i] = this->m_cumsum[i - 1] + this->m_pow[i - 1];
}
}
if (!this->m_period) {
const long long size = ::std::ssize(this->m_inv_cumsum);
this->m_inv_cumsum.resize(this->m_inv_pow.size() + 1);
for (long long i = size; i < ::std::ssize(this->m_inv_cumsum); ++i) {
this->m_inv_cumsum[i] = this->m_inv_cumsum[i - 1] + this->m_pow[i - 1];
}
if (l >= 0) {
return this->m_cumsum[r] - this->m_cumsum[l];
} else if (r <= 0) {
return this->m_inv_cumsum[-l] - this->m_inv_cumsum[-r];
} else {
return (this->m_inv_cumsum[-l] - this->m_inv_cumsum[1]) + (this->m_cumsum[r] - this->m_cumsum[0]);
}
}
static const auto cumsum = [&](const long long ll, const long long rr) {
return this->m_cumsum[rr] - this->m_cumsum[ll];
};
if (l >= 0) {
static const auto f = [&](const long long x) {
if (x <= this->m_period->first + this->m_period->second) {
return cumsum(0, x);
} else {
return cumsum(0, this->m_period->first) +
cumsum(this->m_period->first, this->m_period->first + this->m_period->second) * ((x - this->m_period->first) / this->m_period->second) +
cumsum(this->m_period->first, (x - this->m_period->first) % this->m_period->second + this->m_period->first);
}
};
return f(r) - f(l);
} else {
const auto& n = this->m_period->second;
return cumsum(::tools::mod(l, n), n) + cumsum(0, ::tools::mod(r, n)) + cumsum(0, n) * M(::tools::floor(r, n) - ::tools::ceil(l, n));
}
}
};
}