This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "tools/persistent_segtree.hpp"
It is the data structure for monoids $(S, \cdot: S \times S \to S, e \in S)$, i.e., the algebraic structure that satisfies the following properties.
Given an array $S$ of length $N$, it processes the following queries in $O(\log N)$ time.
For simplicity, in this document, we assume that the oracles op
and e
work in constant time. If these oracles work in $O(T)$ time, each time complexity appear in this document is multipled by $O(T)$.
persistent_segtree<SM>::buffer buffer();
It creates an empty buffer for tools::persistent_segtree<SM>
.
It defines $S$ by typename SM::T
, $\mathrm{op}$ by S SM::op(S x, S y)
and $\mathrm{e}$ by S SM::e()
.
(1) persistent_segtree<SM> a(persistent_segtree<SM>::buffer& buffer, long long l_star, long long r_star);
(2) persistent_segtree<SM> a(persistent_segtree<SM>::buffer& buffer, long long l_star, long long r_star, S x);
(3) persistent_segtree<SM> a(persistent_segtree<SM>::buffer& buffer, std::ranges::range v);
e()
.x
.v
.The data will be stored on buffer
.
buffer
has not been used so far.long long a.lower_bound();
It returns $l^\ast$.
buffer
is in its lifetime.long long a.upper_bound();
It returns $r^\ast$.
buffer
is in its lifetime.persistent_segtree<SM> a.set(long long p, S x);
It creates $b$, a copy of $a$, assigns $x$ to $b_p$ and returns $b$.
buffer
is in its lifetime.S a.get(long long p);
It returns $a_p$.
buffer
is in its lifetime.S a.prod(long long l, long long r);
It returns $\mathrm{op}(a_l, \ldots, a_{r - 1})$, assuming the properties of the monoid. It returns $\mathrm{e}()$ if $l = r$.
buffer
is in its lifetime.S a.all_prod();
It returns $\mathrm{op}(a_{l^\ast}, \ldots, a_{r^\ast - 1})$, assuming the properties of the monoid. It returns $\mathrm{e}()$ if $l^\ast = r^\ast$.
buffer
is in its lifetime.persistent_segtree<SM> a.rollback(persistent_lazy_segtree<SM> s, long long l, long long r);
It creates $b$, a copy of $a$, assigns $s_i$ to $b_i$ for all $i$ such that $l \leq i < r$ and returns $b$.
buffer
is in its lifetime.a
and s
shares the same buffer
.long long a.max_right<G>(long long l, G g)
It returns an index $r$ that satisfies both of the followings.
If $g$ is monotone, this is the maximum $r$ that satisfies $g(\mathrm{op}(a_l, a_{l + 1}, \ldots, a_{r - 1})) = \top$.
buffer
is in its lifetime.S
as the argument and returns bool
should be defined.g
is called with the same argument, it returns the same value, i.e., g
has no side effect.long long a.min_left<G>(long long r, G g)
It returns an index $l$ that satisfies both of the followings.
If $g$ is monotone, this is the minimum $l$ that satisfies $g(\mathrm{op}(a_l, a_{l + 1}, \ldots, a_{r - 1})) = \top$.
buffer
is in its lifetime.S
as the argument and returns bool
should be defined.g
is called with the same argument, it returns the same value, i.e., g
has no side effect.#ifndef TOOLS_PERSISTENT_SEGTREE_HPP
#define TOOLS_PERSISTENT_SEGTREE_HPP
#include <algorithm>
#include <array>
#include <cassert>
#include <functional>
#include <numeric>
#include <ranges>
#include <type_traits>
#include <utility>
#include <vector>
#include "tools/ceil_log2.hpp"
#include "tools/fix.hpp"
namespace tools {
template <typename SM>
class persistent_segtree {
using S = typename SM::T;
struct node {
S data;
::std::array<int, 2> children;
};
public:
class buffer {
::std::vector<::tools::persistent_segtree<SM>::node> m_nodes;
long long m_offset;
long long m_size;
int m_height;
public:
friend ::tools::persistent_segtree<SM>;
};
private:
::tools::persistent_segtree<SM>::buffer *m_buffer;
int m_root;
long long capacity() const {
return 1LL << this->m_buffer->m_height;
}
public:
persistent_segtree() = default;
persistent_segtree(::tools::persistent_segtree<SM>::buffer& buffer, const long long l_star, const long long r_star) :
persistent_segtree(buffer, l_star, r_star, SM::e()) {
}
persistent_segtree(::tools::persistent_segtree<SM>::buffer& buffer, const long long l_star, const long long r_star, const S& x) : m_buffer(&buffer) {
assert(buffer.m_nodes.empty());
assert(l_star <= r_star);
buffer.m_offset = l_star;
buffer.m_size = r_star - l_star;
buffer.m_height = ::tools::ceil_log2(::std::max(1LL, r_star - l_star));
buffer.m_nodes.push_back({x, {-1, -1}});
for (int k = 1; k <= buffer.m_height; ++k) {
buffer.m_nodes.push_back({SM::op(buffer.m_nodes.back().data, buffer.m_nodes.back().data), {k - 1, k - 1}});
}
this->m_root = buffer.m_height;
}
template <::std::ranges::range R>
persistent_segtree(::tools::persistent_segtree<SM>::buffer& buffer, R&& v) : m_buffer(&buffer) {
assert(buffer.m_nodes.empty());
for (auto&& x : v) {
buffer.m_nodes.push_back({x, {-1, -1}});
}
buffer.m_offset = 0;
buffer.m_size = buffer.m_nodes.size();
buffer.m_height = ::tools::ceil_log2(::std::max(1LL, buffer.m_size));
buffer.m_nodes.push_back({SM::e(), {-1, -1}});
for (int h = 1; h <= buffer.m_height; ++h) {
buffer.m_nodes.push_back({SM::e(), {static_cast<int>(buffer.m_nodes.size()) - 1, static_cast<int>(buffer.m_nodes.size()) - 1}});
}
this->m_root = ::tools::fix([&](auto&& dfs, const int h, const long long kl, const long long kr) -> int {
assert(kl < kr);
if (buffer.m_size <= kl) return buffer.m_size + h;
if (h == 0) return kl;
const auto km = ::std::midpoint(kl, kr);
const auto left_child = dfs(h - 1, kl, km);
const auto right_child = dfs(h - 1, km, kr);
buffer.m_nodes.push_back({SM::op(buffer.m_nodes[left_child].data, buffer.m_nodes[right_child].data), {left_child, right_child}});
return buffer.m_nodes.size() - 1;
})(buffer.m_height, 0, this->capacity());
}
long long lower_bound() const {
return this->m_buffer->m_offset;
}
long long upper_bound() const {
return this->m_buffer->m_offset + this->m_buffer->m_size;
}
::tools::persistent_segtree<SM> set(long long p, const S& x) const {
assert(this->lower_bound() <= p && p < this->upper_bound());
auto& buffer = *this->m_buffer;
p -= buffer.m_offset;
auto res = *this;
res.m_root = ::tools::fix([&](auto&& dfs, const int k, const long long kl, const long long kr) -> int {
assert(kl < kr);
if (p <= kl && kr <= p + 1) {
buffer.m_nodes.push_back({x, buffer.m_nodes[k].children});
return buffer.m_nodes.size() - 1;
}
if (kr <= p || p + 1 <= kl) {
return k;
}
const auto km = ::std::midpoint(kl, kr);
const auto left_child = dfs(buffer.m_nodes[k].children[0], kl, km);
const auto right_child = dfs(buffer.m_nodes[k].children[1], km, kr);
buffer.m_nodes.push_back({SM::op(buffer.m_nodes[left_child].data, buffer.m_nodes[right_child].data), {left_child, right_child}});
return buffer.m_nodes.size() - 1;
})(res.m_root, 0, res.capacity());
return res;
}
S get(const long long p) const {
return this->prod(p, p + 1);
}
S prod(long long l, long long r) const {
assert(this->lower_bound() <= l && l <= r && r <= this->upper_bound());
if (l == r) return SM::e();
auto& buffer = *this->m_buffer;
l -= buffer.m_offset;
r -= buffer.m_offset;
return ::tools::fix([&](auto&& dfs, const int k, const long long kl, const long long kr) -> S {
assert(kl < kr);
if (l <= kl && kr <= r) return buffer.m_nodes[k].data;
const auto km = ::std::midpoint(kl, kr);
S res = SM::e();
if (l < km) res = SM::op(res, dfs(buffer.m_nodes[k].children[0], kl, km));
if (km < r) res = SM::op(res, dfs(buffer.m_nodes[k].children[1], km, kr));
return res;
})(this->m_root, 0, this->capacity());
}
S all_prod() const {
return this->m_buffer->m_nodes[this->m_root].data;
}
::tools::persistent_segtree<SM> rollback(const ::tools::persistent_segtree<SM>& s, long long l, long long r) const {
assert(this->m_buffer == s.m_buffer);
assert(this->lower_bound() <= l && l <= r && r <= this->upper_bound());
if (l == r) return *this;
if (l == this->lower_bound() && r == this->upper_bound()) return s;
auto& buffer = *this->m_buffer;
l -= buffer.m_offset;
r -= buffer.m_offset;
auto res = *this;
res.m_root = ::tools::fix([&](auto&& dfs, const int k1, const int k2, const long long kl, const long long kr) -> int {
assert(kl < kr);
if (l <= kl && kr <= r) return k2;
if (kr <= l || r <= kl) return k1;
const auto km = ::std::midpoint(kl, kr);
const auto left_child = dfs(buffer.m_nodes[k1].children[0], buffer.m_nodes[k2].children[0], kl, km);
const auto right_child = dfs(buffer.m_nodes[k1].children[1], buffer.m_nodes[k2].children[1], km, kr);
buffer.m_nodes.push_back({SM::op(buffer.m_nodes[left_child].data, buffer.m_nodes[right_child].data), {left_child, right_child}});
return buffer.m_nodes.size() - 1;
})(res.m_root, s.m_root, 0, res.capacity());
return res;
}
template <typename G>
long long max_right(long long l, const G& g) const {
assert(this->lower_bound() <= l && l <= this->upper_bound());
assert(g(SM::e()));
if (l == this->upper_bound()) return l;
auto& buffer = *this->m_buffer;
l -= buffer.m_offset;
return buffer.m_offset + ::std::min(::tools::fix([&](auto&& dfs, const S& c, const int k, const long long kl, const long long kr) -> ::std::pair<S, long long> {
assert(kl < kr);
if (kl < l) {
assert(kl < l && l < kr);
const auto km = ::std::midpoint(kl, kr);
if (l < km) {
const auto [hc, hr] = dfs(c, buffer.m_nodes[k].children[0], kl, km);
assert(l <= hr && hr <= km);
if (hr < km) return {hc, hr};
return dfs(hc, buffer.m_nodes[k].children[1], km, kr);
} else {
return dfs(c, buffer.m_nodes[k].children[1], km, kr);
}
} else {
if (const auto wc = SM::op(c, buffer.m_nodes[k].data); g(wc)) return {wc, kr};
if (kr - kl == 1) return {c, kl};
const auto km = ::std::midpoint(kl, kr);
const auto [hc, hr] = dfs(c, buffer.m_nodes[k].children[0], kl, km);
assert(l <= hr && hr <= km);
if (hr < km) return {hc, hr};
return dfs(hc, buffer.m_nodes[k].children[1], km, kr);
}
})(SM::e(), this->m_root, 0, this->capacity()).second, buffer.m_size);
}
template <typename G>
long long min_left(long long r, const G& g) const {
assert(this->lower_bound() <= r && r <= this->upper_bound());
assert(g(SM::e()));
if (r == this->lower_bound()) return r;
auto& buffer = *this->m_buffer;
r -= buffer.m_offset;
return buffer.m_offset + ::tools::fix([&](auto&& dfs, const S& c, const int k, const long long kl, const long long kr) -> ::std::pair<S, long long> {
assert(kl < kr);
if (r < kr) {
assert(kl < r && r < kr);
const auto km = ::std::midpoint(kl, kr);
if (km < r) {
const auto [hc, hl] = dfs(c, buffer.m_nodes[k].children[1], km, kr);
assert(km <= hl && hl <= r);
if (km < hl) return {hc, hl};
return dfs(hc, buffer.m_nodes[k].children[0], kl, km);
} else {
return dfs(c, buffer.m_nodes[k].children[0], kl, km);
}
} else {
if (const auto wc = SM::op(buffer.m_nodes[k].data, c); g(wc)) return {wc, kl};
if (kr - kl == 1) return {c, kr};
const auto km = ::std::midpoint(kl, kr);
const auto [hc, hl] = dfs(c, buffer.m_nodes[k].children[1], km, kr);
assert(km <= hl && hl <= r);
if (km < hl) return {hc, hl};
return dfs(hc, buffer.m_nodes[k].children[0], kl, km);
}
})(SM::e(), this->m_root, 0, this->capacity()).second;
}
};
}
#endif
#line 1 "tools/persistent_segtree.hpp"
#include <algorithm>
#include <array>
#include <cassert>
#include <functional>
#include <numeric>
#include <ranges>
#include <type_traits>
#include <utility>
#include <vector>
#line 1 "tools/ceil_log2.hpp"
#line 1 "tools/bit_width.hpp"
#include <bit>
#line 1 "tools/is_integral.hpp"
#line 5 "tools/is_integral.hpp"
namespace tools {
template <typename T>
struct is_integral : ::std::is_integral<T> {};
template <typename T>
inline constexpr bool is_integral_v = ::tools::is_integral<T>::value;
}
#line 1 "tools/is_signed.hpp"
#line 5 "tools/is_signed.hpp"
namespace tools {
template <typename T>
struct is_signed : ::std::is_signed<T> {};
template <typename T>
inline constexpr bool is_signed_v = ::tools::is_signed<T>::value;
}
#line 1 "tools/make_unsigned.hpp"
#line 5 "tools/make_unsigned.hpp"
namespace tools {
template <typename T>
struct make_unsigned : ::std::make_unsigned<T> {};
template <typename T>
using make_unsigned_t = typename ::tools::make_unsigned<T>::type;
}
#line 10 "tools/bit_width.hpp"
namespace tools {
template <typename T>
constexpr int bit_width(T) noexcept;
template <typename T>
constexpr int bit_width(const T x) noexcept {
static_assert(::tools::is_integral_v<T> && !::std::is_same_v<::std::remove_cv_t<T>, bool>);
if constexpr (::tools::is_signed_v<T>) {
assert(x >= 0);
return ::tools::bit_width<::tools::make_unsigned_t<T>>(x);
} else {
return ::std::bit_width(x);
}
}
}
#line 6 "tools/ceil_log2.hpp"
namespace tools {
template <typename T>
constexpr T ceil_log2(T x) noexcept {
assert(x > 0);
return ::tools::bit_width(x - 1);
}
}
#line 1 "tools/fix.hpp"
#line 6 "tools/fix.hpp"
namespace tools {
template <typename F>
struct fix : F {
template <typename G>
fix(G&& g) : F({::std::forward<G>(g)}) {
}
template <typename... Args>
decltype(auto) operator()(Args&&... args) const {
return F::operator()(*this, ::std::forward<Args>(args)...);
}
};
template <typename F>
fix(F&&) -> fix<::std::decay_t<F>>;
}
#line 15 "tools/persistent_segtree.hpp"
namespace tools {
template <typename SM>
class persistent_segtree {
using S = typename SM::T;
struct node {
S data;
::std::array<int, 2> children;
};
public:
class buffer {
::std::vector<::tools::persistent_segtree<SM>::node> m_nodes;
long long m_offset;
long long m_size;
int m_height;
public:
friend ::tools::persistent_segtree<SM>;
};
private:
::tools::persistent_segtree<SM>::buffer *m_buffer;
int m_root;
long long capacity() const {
return 1LL << this->m_buffer->m_height;
}
public:
persistent_segtree() = default;
persistent_segtree(::tools::persistent_segtree<SM>::buffer& buffer, const long long l_star, const long long r_star) :
persistent_segtree(buffer, l_star, r_star, SM::e()) {
}
persistent_segtree(::tools::persistent_segtree<SM>::buffer& buffer, const long long l_star, const long long r_star, const S& x) : m_buffer(&buffer) {
assert(buffer.m_nodes.empty());
assert(l_star <= r_star);
buffer.m_offset = l_star;
buffer.m_size = r_star - l_star;
buffer.m_height = ::tools::ceil_log2(::std::max(1LL, r_star - l_star));
buffer.m_nodes.push_back({x, {-1, -1}});
for (int k = 1; k <= buffer.m_height; ++k) {
buffer.m_nodes.push_back({SM::op(buffer.m_nodes.back().data, buffer.m_nodes.back().data), {k - 1, k - 1}});
}
this->m_root = buffer.m_height;
}
template <::std::ranges::range R>
persistent_segtree(::tools::persistent_segtree<SM>::buffer& buffer, R&& v) : m_buffer(&buffer) {
assert(buffer.m_nodes.empty());
for (auto&& x : v) {
buffer.m_nodes.push_back({x, {-1, -1}});
}
buffer.m_offset = 0;
buffer.m_size = buffer.m_nodes.size();
buffer.m_height = ::tools::ceil_log2(::std::max(1LL, buffer.m_size));
buffer.m_nodes.push_back({SM::e(), {-1, -1}});
for (int h = 1; h <= buffer.m_height; ++h) {
buffer.m_nodes.push_back({SM::e(), {static_cast<int>(buffer.m_nodes.size()) - 1, static_cast<int>(buffer.m_nodes.size()) - 1}});
}
this->m_root = ::tools::fix([&](auto&& dfs, const int h, const long long kl, const long long kr) -> int {
assert(kl < kr);
if (buffer.m_size <= kl) return buffer.m_size + h;
if (h == 0) return kl;
const auto km = ::std::midpoint(kl, kr);
const auto left_child = dfs(h - 1, kl, km);
const auto right_child = dfs(h - 1, km, kr);
buffer.m_nodes.push_back({SM::op(buffer.m_nodes[left_child].data, buffer.m_nodes[right_child].data), {left_child, right_child}});
return buffer.m_nodes.size() - 1;
})(buffer.m_height, 0, this->capacity());
}
long long lower_bound() const {
return this->m_buffer->m_offset;
}
long long upper_bound() const {
return this->m_buffer->m_offset + this->m_buffer->m_size;
}
::tools::persistent_segtree<SM> set(long long p, const S& x) const {
assert(this->lower_bound() <= p && p < this->upper_bound());
auto& buffer = *this->m_buffer;
p -= buffer.m_offset;
auto res = *this;
res.m_root = ::tools::fix([&](auto&& dfs, const int k, const long long kl, const long long kr) -> int {
assert(kl < kr);
if (p <= kl && kr <= p + 1) {
buffer.m_nodes.push_back({x, buffer.m_nodes[k].children});
return buffer.m_nodes.size() - 1;
}
if (kr <= p || p + 1 <= kl) {
return k;
}
const auto km = ::std::midpoint(kl, kr);
const auto left_child = dfs(buffer.m_nodes[k].children[0], kl, km);
const auto right_child = dfs(buffer.m_nodes[k].children[1], km, kr);
buffer.m_nodes.push_back({SM::op(buffer.m_nodes[left_child].data, buffer.m_nodes[right_child].data), {left_child, right_child}});
return buffer.m_nodes.size() - 1;
})(res.m_root, 0, res.capacity());
return res;
}
S get(const long long p) const {
return this->prod(p, p + 1);
}
S prod(long long l, long long r) const {
assert(this->lower_bound() <= l && l <= r && r <= this->upper_bound());
if (l == r) return SM::e();
auto& buffer = *this->m_buffer;
l -= buffer.m_offset;
r -= buffer.m_offset;
return ::tools::fix([&](auto&& dfs, const int k, const long long kl, const long long kr) -> S {
assert(kl < kr);
if (l <= kl && kr <= r) return buffer.m_nodes[k].data;
const auto km = ::std::midpoint(kl, kr);
S res = SM::e();
if (l < km) res = SM::op(res, dfs(buffer.m_nodes[k].children[0], kl, km));
if (km < r) res = SM::op(res, dfs(buffer.m_nodes[k].children[1], km, kr));
return res;
})(this->m_root, 0, this->capacity());
}
S all_prod() const {
return this->m_buffer->m_nodes[this->m_root].data;
}
::tools::persistent_segtree<SM> rollback(const ::tools::persistent_segtree<SM>& s, long long l, long long r) const {
assert(this->m_buffer == s.m_buffer);
assert(this->lower_bound() <= l && l <= r && r <= this->upper_bound());
if (l == r) return *this;
if (l == this->lower_bound() && r == this->upper_bound()) return s;
auto& buffer = *this->m_buffer;
l -= buffer.m_offset;
r -= buffer.m_offset;
auto res = *this;
res.m_root = ::tools::fix([&](auto&& dfs, const int k1, const int k2, const long long kl, const long long kr) -> int {
assert(kl < kr);
if (l <= kl && kr <= r) return k2;
if (kr <= l || r <= kl) return k1;
const auto km = ::std::midpoint(kl, kr);
const auto left_child = dfs(buffer.m_nodes[k1].children[0], buffer.m_nodes[k2].children[0], kl, km);
const auto right_child = dfs(buffer.m_nodes[k1].children[1], buffer.m_nodes[k2].children[1], km, kr);
buffer.m_nodes.push_back({SM::op(buffer.m_nodes[left_child].data, buffer.m_nodes[right_child].data), {left_child, right_child}});
return buffer.m_nodes.size() - 1;
})(res.m_root, s.m_root, 0, res.capacity());
return res;
}
template <typename G>
long long max_right(long long l, const G& g) const {
assert(this->lower_bound() <= l && l <= this->upper_bound());
assert(g(SM::e()));
if (l == this->upper_bound()) return l;
auto& buffer = *this->m_buffer;
l -= buffer.m_offset;
return buffer.m_offset + ::std::min(::tools::fix([&](auto&& dfs, const S& c, const int k, const long long kl, const long long kr) -> ::std::pair<S, long long> {
assert(kl < kr);
if (kl < l) {
assert(kl < l && l < kr);
const auto km = ::std::midpoint(kl, kr);
if (l < km) {
const auto [hc, hr] = dfs(c, buffer.m_nodes[k].children[0], kl, km);
assert(l <= hr && hr <= km);
if (hr < km) return {hc, hr};
return dfs(hc, buffer.m_nodes[k].children[1], km, kr);
} else {
return dfs(c, buffer.m_nodes[k].children[1], km, kr);
}
} else {
if (const auto wc = SM::op(c, buffer.m_nodes[k].data); g(wc)) return {wc, kr};
if (kr - kl == 1) return {c, kl};
const auto km = ::std::midpoint(kl, kr);
const auto [hc, hr] = dfs(c, buffer.m_nodes[k].children[0], kl, km);
assert(l <= hr && hr <= km);
if (hr < km) return {hc, hr};
return dfs(hc, buffer.m_nodes[k].children[1], km, kr);
}
})(SM::e(), this->m_root, 0, this->capacity()).second, buffer.m_size);
}
template <typename G>
long long min_left(long long r, const G& g) const {
assert(this->lower_bound() <= r && r <= this->upper_bound());
assert(g(SM::e()));
if (r == this->lower_bound()) return r;
auto& buffer = *this->m_buffer;
r -= buffer.m_offset;
return buffer.m_offset + ::tools::fix([&](auto&& dfs, const S& c, const int k, const long long kl, const long long kr) -> ::std::pair<S, long long> {
assert(kl < kr);
if (r < kr) {
assert(kl < r && r < kr);
const auto km = ::std::midpoint(kl, kr);
if (km < r) {
const auto [hc, hl] = dfs(c, buffer.m_nodes[k].children[1], km, kr);
assert(km <= hl && hl <= r);
if (km < hl) return {hc, hl};
return dfs(hc, buffer.m_nodes[k].children[0], kl, km);
} else {
return dfs(c, buffer.m_nodes[k].children[0], kl, km);
}
} else {
if (const auto wc = SM::op(buffer.m_nodes[k].data, c); g(wc)) return {wc, kl};
if (kr - kl == 1) return {c, kr};
const auto km = ::std::midpoint(kl, kr);
const auto [hc, hl] = dfs(c, buffer.m_nodes[k].children[1], km, kr);
assert(km <= hl && hl <= r);
if (km < hl) return {hc, hl};
return dfs(hc, buffer.m_nodes[k].children[0], kl, km);
}
})(SM::e(), this->m_root, 0, this->capacity()).second;
}
};
}