This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "tools/persistent_dual_segtree.hpp"
It is the data structure for monoids, a set $F$ of $S \to S$ mappings that satisfies the following properties.
Given an array $F$ of length $N$, it processes the following queries in $O(\log N)$ time.
For simplicity, in this document, we assume that the oracles composition
and id
work in constant time. If these oracles work in $O(T)$ time, each time complexity appear in this document is multipled by $O(T)$.
persistent_dual_segtree<FM>::buffer buffer();
It creates an empty buffer for tools::persistent_dual_segtree<FM>
.
It defines $F$ by typename FM::T
, $\mathrm{composition}$ by F FM::op(F f, F g)
and $\mathrm{id}$ by F FM::e()
.
persistent_dual_segtree<FM> a(persistent_dual_segtree<FM>::buffer& buffer, long long l_star, long long r_star);
It creates an array $(a_{l^\ast}, a_{l^\ast + 1}, \ldots, a_{r^\ast - 1})$. All the elements are initialized to id()
.
The data will be stored on buffer
.
buffer
has not been used so far.long long a.lower_bound();
It returns $l^\ast$.
buffer
is in its lifetime.long long a.upper_bound();
It returns $r^\ast$.
buffer
is in its lifetime.F a.get(long long p);
It returns $a_p$.
buffer
is in its lifetime.(1) persistent_dual_segtree<FM> a.apply(long long p, F f);
(2) persistent_dual_segtree<FM> a.apply(long long l, long long r, F f);
buffer
is in its lifetime.persistent_dual_segtree<FM> a.rollback(persistent_dual_segtree<FM> s, long long l, long long r);
It creates $b$, a copy of $a$, assigns $s_i$ to $b_i$ for all $i$ such that $l \leq i < r$ and returns $b$.
buffer
is in its lifetime.a
and s
shares the same buffer
.#ifndef TOOLS_PERSISTENT_DUAL_SEGTREE_HPP
#define TOOLS_PERSISTENT_DUAL_SEGTREE_HPP
#include <algorithm>
#include <array>
#include <cassert>
#include <functional>
#include <numeric>
#include <ranges>
#include <type_traits>
#include <utility>
#include <vector>
#include "tools/ceil_log2.hpp"
#include "tools/fix.hpp"
namespace tools {
template <typename FM>
class persistent_dual_segtree {
using F = typename FM::T;
struct node {
F lazy;
::std::array<int, 2> children;
};
public:
class buffer {
::std::vector<::tools::persistent_dual_segtree<FM>::node> m_nodes;
long long m_offset;
long long m_size;
int m_height;
public:
friend ::tools::persistent_dual_segtree<FM>;
};
private:
::tools::persistent_dual_segtree<FM>::buffer *m_buffer;
int m_root;
long long capacity() const {
return 1LL << this->m_buffer->m_height;
}
public:
persistent_dual_segtree() = default;
persistent_dual_segtree(::tools::persistent_dual_segtree<FM>::buffer& buffer, const long long l_star, const long long r_star) : m_buffer(&buffer) {
assert(buffer.m_nodes.empty());
assert(l_star <= r_star);
buffer.m_offset = l_star;
buffer.m_size = r_star - l_star;
buffer.m_height = ::tools::ceil_log2(::std::max(1LL, r_star - l_star));
buffer.m_nodes.push_back({FM::e(), {-1, -1}});
for (int k = 1; k <= buffer.m_height; ++k) {
buffer.m_nodes.push_back({FM::e(), {k - 1, k - 1}});
}
this->m_root = buffer.m_height;
}
long long lower_bound() const {
return this->m_buffer->m_offset;
}
long long upper_bound() const {
return this->m_buffer->m_offset + this->m_buffer->m_size;
}
F get(long long p) const {
assert(this->lower_bound() <= p && p < this->upper_bound());
auto& buffer = *this->m_buffer;
p -= buffer.m_offset;
return ::tools::fix([&](auto&& dfs, const int k, const long long kl, const long long kr, const F& lz) -> F {
assert(kl < kr);
if (p <= kl && kr <= p + 1) return FM::op(lz, buffer.m_nodes[k].lazy);
const auto km = ::std::midpoint(kl, kr);
const F next_lz = FM::op(lz, buffer.m_nodes[k].lazy);
if (p < km) return dfs(buffer.m_nodes[k].children[0], kl, km, next_lz);
else return dfs(buffer.m_nodes[k].children[1], km, kr, next_lz);
})(this->m_root, 0, this->capacity(), FM::e());
}
::tools::persistent_dual_segtree<FM> apply(const long long p, const F& f) const {
return this->apply(p, p + 1, f);
}
::tools::persistent_dual_segtree<FM> apply(long long l, long long r, const F& f) const {
assert(this->lower_bound() <= l && l <= r && r <= this->upper_bound());
if (l == r) return *this;
auto& buffer = *this->m_buffer;
l -= buffer.m_offset;
r -= buffer.m_offset;
auto res = *this;
res.m_root = ::tools::fix([&](auto&& dfs, const int k, const long long kl, const long long kr, const F& lz) -> int {
assert(kl < kr);
if (l <= kl && kr <= r) {
const F modified_lz = FM::op(f, lz);
buffer.m_nodes.push_back({FM::op(modified_lz, buffer.m_nodes[k].lazy), buffer.m_nodes[k].children});
return buffer.m_nodes.size() - 1;
}
if (kr <= l || r <= kl) {
if (lz == FM::e()) return k;
buffer.m_nodes.push_back({FM::op(lz, buffer.m_nodes[k].lazy), buffer.m_nodes[k].children});
return buffer.m_nodes.size() - 1;
}
const auto km = ::std::midpoint(kl, kr);
const F next_lz = FM::op(lz, buffer.m_nodes[k].lazy);
const auto left_child = dfs(buffer.m_nodes[k].children[0], kl, km, next_lz);
const auto right_child = dfs(buffer.m_nodes[k].children[1], km, kr, next_lz);
buffer.m_nodes.push_back({FM::e(), {left_child, right_child}});
return buffer.m_nodes.size() - 1;
})(res.m_root, 0, res.capacity(), FM::e());
return res;
}
::tools::persistent_dual_segtree<FM> rollback(const ::tools::persistent_dual_segtree<FM>& s, long long l, long long r) const {
assert(this->m_buffer == s.m_buffer);
assert(this->lower_bound() <= l && l <= r && r <= this->upper_bound());
if (l == r) return *this;
if (l == this->lower_bound() && r == this->upper_bound()) return s;
auto& buffer = *this->m_buffer;
l -= buffer.m_offset;
r -= buffer.m_offset;
auto res = *this;
res.m_root = ::tools::fix([&](auto&& dfs, const int k1, const int k2, const long long kl, const long long kr, const F& lz1, const F& lz2) -> int {
assert(kl < kr);
if (l <= kl && kr <= r) {
if (lz2 == FM::e()) return k2;
buffer.m_nodes.push_back({FM::op(lz2, buffer.m_nodes[k2].lazy), buffer.m_nodes[k2].children});
return buffer.m_nodes.size() - 1;
}
if (kr <= l || r <= kl) {
if (lz1 == FM::e()) return k1;
buffer.m_nodes.push_back({FM::op(lz1, buffer.m_nodes[k1].lazy), buffer.m_nodes[k1].children});
return buffer.m_nodes.size() - 1;
}
const auto km = ::std::midpoint(kl, kr);
const F next_lz1 = FM::op(lz1, buffer.m_nodes[k1].lazy);
const F next_lz2 = FM::op(lz2, buffer.m_nodes[k2].lazy);
const auto left_child = dfs(buffer.m_nodes[k1].children[0], buffer.m_nodes[k2].children[0], kl, km, next_lz1, next_lz2);
const auto right_child = dfs(buffer.m_nodes[k1].children[1], buffer.m_nodes[k2].children[1], km, kr, next_lz1, next_lz2);
buffer.m_nodes.push_back({FM::e(), {left_child, right_child}});
return buffer.m_nodes.size() - 1;
})(res.m_root, s.m_root, 0, res.capacity(), FM::e(), FM::e());
return res;
}
};
}
#endif
#line 1 "tools/persistent_dual_segtree.hpp"
#include <algorithm>
#include <array>
#include <cassert>
#include <functional>
#include <numeric>
#include <ranges>
#include <type_traits>
#include <utility>
#include <vector>
#line 1 "tools/ceil_log2.hpp"
#line 1 "tools/bit_width.hpp"
#include <bit>
#line 1 "tools/is_integral.hpp"
#line 5 "tools/is_integral.hpp"
namespace tools {
template <typename T>
struct is_integral : ::std::is_integral<T> {};
template <typename T>
inline constexpr bool is_integral_v = ::tools::is_integral<T>::value;
}
#line 1 "tools/is_signed.hpp"
#line 5 "tools/is_signed.hpp"
namespace tools {
template <typename T>
struct is_signed : ::std::is_signed<T> {};
template <typename T>
inline constexpr bool is_signed_v = ::tools::is_signed<T>::value;
}
#line 1 "tools/make_unsigned.hpp"
#line 5 "tools/make_unsigned.hpp"
namespace tools {
template <typename T>
struct make_unsigned : ::std::make_unsigned<T> {};
template <typename T>
using make_unsigned_t = typename ::tools::make_unsigned<T>::type;
}
#line 10 "tools/bit_width.hpp"
namespace tools {
template <typename T>
constexpr int bit_width(T) noexcept;
template <typename T>
constexpr int bit_width(const T x) noexcept {
static_assert(::tools::is_integral_v<T> && !::std::is_same_v<::std::remove_cv_t<T>, bool>);
if constexpr (::tools::is_signed_v<T>) {
assert(x >= 0);
return ::tools::bit_width<::tools::make_unsigned_t<T>>(x);
} else {
return ::std::bit_width(x);
}
}
}
#line 6 "tools/ceil_log2.hpp"
namespace tools {
template <typename T>
constexpr T ceil_log2(T x) noexcept {
assert(x > 0);
return ::tools::bit_width(x - 1);
}
}
#line 1 "tools/fix.hpp"
#line 6 "tools/fix.hpp"
namespace tools {
template <typename F>
struct fix : F {
template <typename G>
fix(G&& g) : F({::std::forward<G>(g)}) {
}
template <typename... Args>
decltype(auto) operator()(Args&&... args) const {
return F::operator()(*this, ::std::forward<Args>(args)...);
}
};
template <typename F>
fix(F&&) -> fix<::std::decay_t<F>>;
}
#line 15 "tools/persistent_dual_segtree.hpp"
namespace tools {
template <typename FM>
class persistent_dual_segtree {
using F = typename FM::T;
struct node {
F lazy;
::std::array<int, 2> children;
};
public:
class buffer {
::std::vector<::tools::persistent_dual_segtree<FM>::node> m_nodes;
long long m_offset;
long long m_size;
int m_height;
public:
friend ::tools::persistent_dual_segtree<FM>;
};
private:
::tools::persistent_dual_segtree<FM>::buffer *m_buffer;
int m_root;
long long capacity() const {
return 1LL << this->m_buffer->m_height;
}
public:
persistent_dual_segtree() = default;
persistent_dual_segtree(::tools::persistent_dual_segtree<FM>::buffer& buffer, const long long l_star, const long long r_star) : m_buffer(&buffer) {
assert(buffer.m_nodes.empty());
assert(l_star <= r_star);
buffer.m_offset = l_star;
buffer.m_size = r_star - l_star;
buffer.m_height = ::tools::ceil_log2(::std::max(1LL, r_star - l_star));
buffer.m_nodes.push_back({FM::e(), {-1, -1}});
for (int k = 1; k <= buffer.m_height; ++k) {
buffer.m_nodes.push_back({FM::e(), {k - 1, k - 1}});
}
this->m_root = buffer.m_height;
}
long long lower_bound() const {
return this->m_buffer->m_offset;
}
long long upper_bound() const {
return this->m_buffer->m_offset + this->m_buffer->m_size;
}
F get(long long p) const {
assert(this->lower_bound() <= p && p < this->upper_bound());
auto& buffer = *this->m_buffer;
p -= buffer.m_offset;
return ::tools::fix([&](auto&& dfs, const int k, const long long kl, const long long kr, const F& lz) -> F {
assert(kl < kr);
if (p <= kl && kr <= p + 1) return FM::op(lz, buffer.m_nodes[k].lazy);
const auto km = ::std::midpoint(kl, kr);
const F next_lz = FM::op(lz, buffer.m_nodes[k].lazy);
if (p < km) return dfs(buffer.m_nodes[k].children[0], kl, km, next_lz);
else return dfs(buffer.m_nodes[k].children[1], km, kr, next_lz);
})(this->m_root, 0, this->capacity(), FM::e());
}
::tools::persistent_dual_segtree<FM> apply(const long long p, const F& f) const {
return this->apply(p, p + 1, f);
}
::tools::persistent_dual_segtree<FM> apply(long long l, long long r, const F& f) const {
assert(this->lower_bound() <= l && l <= r && r <= this->upper_bound());
if (l == r) return *this;
auto& buffer = *this->m_buffer;
l -= buffer.m_offset;
r -= buffer.m_offset;
auto res = *this;
res.m_root = ::tools::fix([&](auto&& dfs, const int k, const long long kl, const long long kr, const F& lz) -> int {
assert(kl < kr);
if (l <= kl && kr <= r) {
const F modified_lz = FM::op(f, lz);
buffer.m_nodes.push_back({FM::op(modified_lz, buffer.m_nodes[k].lazy), buffer.m_nodes[k].children});
return buffer.m_nodes.size() - 1;
}
if (kr <= l || r <= kl) {
if (lz == FM::e()) return k;
buffer.m_nodes.push_back({FM::op(lz, buffer.m_nodes[k].lazy), buffer.m_nodes[k].children});
return buffer.m_nodes.size() - 1;
}
const auto km = ::std::midpoint(kl, kr);
const F next_lz = FM::op(lz, buffer.m_nodes[k].lazy);
const auto left_child = dfs(buffer.m_nodes[k].children[0], kl, km, next_lz);
const auto right_child = dfs(buffer.m_nodes[k].children[1], km, kr, next_lz);
buffer.m_nodes.push_back({FM::e(), {left_child, right_child}});
return buffer.m_nodes.size() - 1;
})(res.m_root, 0, res.capacity(), FM::e());
return res;
}
::tools::persistent_dual_segtree<FM> rollback(const ::tools::persistent_dual_segtree<FM>& s, long long l, long long r) const {
assert(this->m_buffer == s.m_buffer);
assert(this->lower_bound() <= l && l <= r && r <= this->upper_bound());
if (l == r) return *this;
if (l == this->lower_bound() && r == this->upper_bound()) return s;
auto& buffer = *this->m_buffer;
l -= buffer.m_offset;
r -= buffer.m_offset;
auto res = *this;
res.m_root = ::tools::fix([&](auto&& dfs, const int k1, const int k2, const long long kl, const long long kr, const F& lz1, const F& lz2) -> int {
assert(kl < kr);
if (l <= kl && kr <= r) {
if (lz2 == FM::e()) return k2;
buffer.m_nodes.push_back({FM::op(lz2, buffer.m_nodes[k2].lazy), buffer.m_nodes[k2].children});
return buffer.m_nodes.size() - 1;
}
if (kr <= l || r <= kl) {
if (lz1 == FM::e()) return k1;
buffer.m_nodes.push_back({FM::op(lz1, buffer.m_nodes[k1].lazy), buffer.m_nodes[k1].children});
return buffer.m_nodes.size() - 1;
}
const auto km = ::std::midpoint(kl, kr);
const F next_lz1 = FM::op(lz1, buffer.m_nodes[k1].lazy);
const F next_lz2 = FM::op(lz2, buffer.m_nodes[k2].lazy);
const auto left_child = dfs(buffer.m_nodes[k1].children[0], buffer.m_nodes[k2].children[0], kl, km, next_lz1, next_lz2);
const auto right_child = dfs(buffer.m_nodes[k1].children[1], buffer.m_nodes[k2].children[1], km, kr, next_lz1, next_lz2);
buffer.m_nodes.push_back({FM::e(), {left_child, right_child}});
return buffer.m_nodes.size() - 1;
})(res.m_root, s.m_root, 0, res.capacity(), FM::e(), FM::e());
return res;
}
};
}