This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "tools/minimum_steiner_tree.hpp"
It returns one of the minimum Steiner trees in $O(3^k n + 2^k (n + m) \log n)$ time given an undirected graph $G = (V, E)$ consisting of $n$ vertices and $m$ edges with non-negative edge weights, and a subset $S$ of $V$ consisting of $k$ vertices. The minimum Steiner tree is the Steiner tree with the smallest sum of edge weights. A Steiner tree is a tree $T = (V’, E’)$ that satisfies $S \subseteq V’ \subseteq V$ and $E’ \subseteq E$.
minimum_steiner_tree<Cost> graph(int n);
It creates an undirected graph with $n$ vertices and $0$ edges.
The type parameter <Cost>
represents the type of the edge weights.
int graph.size();
It returns $n$.
int graph.add_edge(int u, int v, Cost w);
It adds an undirected edge between $u$ and $v$ with cost $w$.
It returns the total number of edges at the point just before calling the add_edge
function.
struct edge {
int from;
int to;
Cost cost;
};
const edge& graph.get_edge(int i);
It returns information about the edge for which the return value of the add_edge
function was $i$.
const std::vector<edge>& graph.edges();
It returns all the edges in the graph.
The edges are ordered in the same order as added by add_edge
.
(1)
Cost graph.query(std::ranges::range S);
(2)
Cost graph.query<false>(std::ranges::range S);
(3)
struct query_result {
Cost cost;
std::vector<int> vertices;
std::vector<int> edge_ids;
};
query_result graph.query<true>(std::ranges::range S);
Given a subset $S$ of $V$ consisting of $k$ vertices, it returns one of the minimum Steiner trees $T = (V’, E’)$ if it exists.
std::numeric_limits<Cost>::max()
.cost
is the same as the return value of (1).vertices
is $V’$.edge_ids
is $E’$. Each element is an integer that identifies an edge and can be passed as an argument to get_edge
.vertices
is empty.edge_ids
is empty.#ifndef TOOLS_MINIMUM_STEINER_TREE_HPP
#define TOOLS_MINIMUM_STEINER_TREE_HPP
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <ranges>
#include <stack>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
#include "tools/chmin.hpp"
#include "tools/greater_by_second.hpp"
namespace tools {
template <typename Cost>
class minimum_steiner_tree {
public:
struct edge {
int from;
int to;
Cost cost;
};
private:
::std::vector<edge> m_edges;
::std::vector<::std::vector<int>> m_graph;
public:
struct query_result {
Cost cost;
::std::vector<int> vertices;
::std::vector<int> edge_ids;
};
minimum_steiner_tree() = default;
explicit minimum_steiner_tree(const int n) : m_graph(n) {
assert(n >= 0);
}
int size() const {
return this->m_graph.size();
}
int add_edge(int u, int v, const Cost w) {
assert(0 <= u && u < this->size());
assert(0 <= v && v < this->size());
assert(w >= 0);
::std::tie(u, v) = ::std::minmax({u, v});
this->m_edges.push_back({u, v, w});
this->m_graph[u].push_back(this->m_edges.size() - 1);
this->m_graph[v].push_back(this->m_edges.size() - 1);
return this->m_edges.size() - 1;
}
const edge& get_edge(const int i) const {
assert(0 <= i && ::std::cmp_less(i, this->m_edges.size()));
return this->m_edges[i];
}
const ::std::vector<edge>& edges() const {
return this->m_edges;
}
public:
template <bool Restore, ::std::ranges::range R>
::std::conditional_t<Restore, query_result, Cost> query(R&& S) const {
if constexpr (::std::ranges::forward_range<R>) {
const auto k = ::std::ranges::distance(S);
assert(0 <= k && k <= this->size());
assert(::std::ranges::all_of(S, [this](const int v) { return 0 <= v && v < this->size(); }));
if (k == 0) {
if constexpr (Restore) {
return query_result{};
} else {
return 0;
}
}
::std::vector dp(1 << k, ::std::vector(this->size(), ::std::numeric_limits<Cost>::max()));
::std::vector prev(Restore ? 1 << k : 0, ::std::vector(this->size(), -1));
for (int t = 0; const auto v : S) {
dp[1 << t][v] = 0;
++t;
}
for (int T = 1; T < 1 << k; ++T) {
for (int v = 0; v < this->size(); ++v) {
for (int U = (T - 1) & T; U > 0; U = (U - 1) & T) {
if (dp[U][v] < ::std::numeric_limits<Cost>::max() && dp[T ^ U][v] < ::std::numeric_limits<Cost>::max() && ::tools::chmin(dp[T][v], dp[U][v] + dp[T ^ U][v])) {
if constexpr (Restore) {
prev[T][v] = U;
}
}
}
}
::std::priority_queue<::std::pair<int, Cost>, ::std::vector<::std::pair<int, Cost>>, ::tools::greater_by_second> pq;
for (int v = 0; v < this->size(); ++v) {
if (dp[T][v] < ::std::numeric_limits<Cost>::max()) {
pq.emplace(v, dp[T][v]);
}
}
while (!pq.empty()) {
const auto [here, d] = pq.top();
pq.pop();
if (dp[T][here] < d) continue;
for (const auto edge_id : this->m_graph[here]) {
const auto& edge = this->m_edges[edge_id];
const auto next = edge.from ^ edge.to ^ here;
if (::tools::chmin(dp[T][next], dp[T][here] + edge.cost)) {
pq.emplace(next, dp[T][next]);
if constexpr (Restore) {
prev[T][next] = (1 << k) + edge_id;
}
}
}
}
}
if constexpr (Restore) {
query_result qr;
qr.cost = dp.back()[*::std::ranges::begin(S)];
if (qr.cost == ::std::numeric_limits<Cost>::max()) return qr;
::std::stack<::std::pair<int, int>> stack;
stack.emplace((1 << k) - 1, *::std::ranges::begin(S));
qr.vertices.push_back(*::std::ranges::begin(S));
while (!stack.empty()) {
const auto [T, v] = stack.top();
stack.pop();
if (prev[T][v] == -1) continue;
if (prev[T][v] < 1 << k) {
stack.emplace(prev[T][v], v);
stack.emplace(T ^ prev[T][v], v);
} else {
const auto edge_id = prev[T][v] - (1 << k);
const auto& edge = this->m_edges[edge_id];
qr.vertices.push_back(edge.from ^ edge.to ^ v);
qr.edge_ids.push_back(edge_id);
stack.emplace(T, edge.from ^ edge.to ^ v);
}
}
return qr;
} else {
return dp.back()[*::std::ranges::begin(S)];
}
} else {
return this->query<Restore>(::std::vector<::std::decay_t<::std::ranges::range_value_t<R>>>(::std::ranges::begin(S), ::std::ranges::end(S)));
}
}
template <::std::ranges::range R>
auto query(R&& S) const {
return this->query<false>(::std::forward<R>(S));
}
};
}
#endif
#line 1 "tools/minimum_steiner_tree.hpp"
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <ranges>
#include <stack>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
#line 1 "tools/chmin.hpp"
#line 6 "tools/chmin.hpp"
namespace tools {
template <typename M, typename N>
bool chmin(M& lhs, const N& rhs) {
bool updated;
if constexpr (::std::is_integral_v<M> && ::std::is_integral_v<N>) {
updated = ::std::cmp_less(rhs, lhs);
} else {
updated = rhs < lhs;
}
if (updated) lhs = rhs;
return updated;
}
}
#line 1 "tools/greater_by_second.hpp"
#line 5 "tools/greater_by_second.hpp"
namespace tools {
class greater_by_second {
public:
template <class T1, class T2>
bool operator()(const ::std::pair<T1, T2>& x, const ::std::pair<T1, T2>& y) const {
return x.second > y.second;
}
};
}
#line 16 "tools/minimum_steiner_tree.hpp"
namespace tools {
template <typename Cost>
class minimum_steiner_tree {
public:
struct edge {
int from;
int to;
Cost cost;
};
private:
::std::vector<edge> m_edges;
::std::vector<::std::vector<int>> m_graph;
public:
struct query_result {
Cost cost;
::std::vector<int> vertices;
::std::vector<int> edge_ids;
};
minimum_steiner_tree() = default;
explicit minimum_steiner_tree(const int n) : m_graph(n) {
assert(n >= 0);
}
int size() const {
return this->m_graph.size();
}
int add_edge(int u, int v, const Cost w) {
assert(0 <= u && u < this->size());
assert(0 <= v && v < this->size());
assert(w >= 0);
::std::tie(u, v) = ::std::minmax({u, v});
this->m_edges.push_back({u, v, w});
this->m_graph[u].push_back(this->m_edges.size() - 1);
this->m_graph[v].push_back(this->m_edges.size() - 1);
return this->m_edges.size() - 1;
}
const edge& get_edge(const int i) const {
assert(0 <= i && ::std::cmp_less(i, this->m_edges.size()));
return this->m_edges[i];
}
const ::std::vector<edge>& edges() const {
return this->m_edges;
}
public:
template <bool Restore, ::std::ranges::range R>
::std::conditional_t<Restore, query_result, Cost> query(R&& S) const {
if constexpr (::std::ranges::forward_range<R>) {
const auto k = ::std::ranges::distance(S);
assert(0 <= k && k <= this->size());
assert(::std::ranges::all_of(S, [this](const int v) { return 0 <= v && v < this->size(); }));
if (k == 0) {
if constexpr (Restore) {
return query_result{};
} else {
return 0;
}
}
::std::vector dp(1 << k, ::std::vector(this->size(), ::std::numeric_limits<Cost>::max()));
::std::vector prev(Restore ? 1 << k : 0, ::std::vector(this->size(), -1));
for (int t = 0; const auto v : S) {
dp[1 << t][v] = 0;
++t;
}
for (int T = 1; T < 1 << k; ++T) {
for (int v = 0; v < this->size(); ++v) {
for (int U = (T - 1) & T; U > 0; U = (U - 1) & T) {
if (dp[U][v] < ::std::numeric_limits<Cost>::max() && dp[T ^ U][v] < ::std::numeric_limits<Cost>::max() && ::tools::chmin(dp[T][v], dp[U][v] + dp[T ^ U][v])) {
if constexpr (Restore) {
prev[T][v] = U;
}
}
}
}
::std::priority_queue<::std::pair<int, Cost>, ::std::vector<::std::pair<int, Cost>>, ::tools::greater_by_second> pq;
for (int v = 0; v < this->size(); ++v) {
if (dp[T][v] < ::std::numeric_limits<Cost>::max()) {
pq.emplace(v, dp[T][v]);
}
}
while (!pq.empty()) {
const auto [here, d] = pq.top();
pq.pop();
if (dp[T][here] < d) continue;
for (const auto edge_id : this->m_graph[here]) {
const auto& edge = this->m_edges[edge_id];
const auto next = edge.from ^ edge.to ^ here;
if (::tools::chmin(dp[T][next], dp[T][here] + edge.cost)) {
pq.emplace(next, dp[T][next]);
if constexpr (Restore) {
prev[T][next] = (1 << k) + edge_id;
}
}
}
}
}
if constexpr (Restore) {
query_result qr;
qr.cost = dp.back()[*::std::ranges::begin(S)];
if (qr.cost == ::std::numeric_limits<Cost>::max()) return qr;
::std::stack<::std::pair<int, int>> stack;
stack.emplace((1 << k) - 1, *::std::ranges::begin(S));
qr.vertices.push_back(*::std::ranges::begin(S));
while (!stack.empty()) {
const auto [T, v] = stack.top();
stack.pop();
if (prev[T][v] == -1) continue;
if (prev[T][v] < 1 << k) {
stack.emplace(prev[T][v], v);
stack.emplace(T ^ prev[T][v], v);
} else {
const auto edge_id = prev[T][v] - (1 << k);
const auto& edge = this->m_edges[edge_id];
qr.vertices.push_back(edge.from ^ edge.to ^ v);
qr.edge_ids.push_back(edge_id);
stack.emplace(T, edge.from ^ edge.to ^ v);
}
}
return qr;
} else {
return dp.back()[*::std::ranges::begin(S)];
}
} else {
return this->query<Restore>(::std::vector<::std::decay_t<::std::ranges::range_value_t<R>>>(::std::ranges::begin(S), ::std::ranges::end(S)));
}
}
template <::std::ranges::range R>
auto query(R&& S) const {
return this->query<false>(::std::forward<R>(S));
}
};
}