This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "tools/longest_common_substring.hpp"
template <typename InputIterator>
std::tuple<std::size_t, std::size_t, std::size_t, std::size_t> longest_common_substring(InputIterator S_begin, InputIterator S_end, InputIterator T_begin, InputIterator T_end);
It returns $(a, b, c, d)$ when a longest common continuous subsequence of $S$ and $T$ can be taken as $(S_a, \ldots, S_{b - 1})$ and $(T_c, \ldots, T_{d - 1})$. If the longest common continuous subsequence is empty, it returns $(0, 0, 0, 0)$.
S_begin
$\leq$ S_end
T_begin
$\leq$ T_end
std::decay_t<decltype(*std::declval<InputIterator>())>
is char
, int
, unsigned int
, long long
or unsigned long long
.std::decay_t<decltype(*std::declval<InputIterator>())>
is char
): $O(|S| + |T|)$#ifndef TOOLS_LONGEST_COMMON_SUBSTRING_HPP
#define TOOLS_LONGEST_COMMON_SUBSTRING_HPP
#include <tuple>
#include <cstddef>
#include <type_traits>
#include <string>
#include <vector>
#include <algorithm>
#include <iterator>
#include "atcoder/string.hpp"
#include "tools/mex.hpp"
#include "tools/chmax.hpp"
namespace tools {
template <typename InputIterator>
::std::tuple<::std::size_t, ::std::size_t, ::std::size_t, ::std::size_t> longest_common_substring(const InputIterator S_begin, const InputIterator S_end, const InputIterator T_begin, const InputIterator T_end) {
using Z = ::std::decay_t<decltype(*::std::declval<InputIterator>())>;
using Container = ::std::conditional_t<::std::is_same_v<Z, char>, ::std::string, ::std::vector<Z>>;
Container ST(S_begin, S_end);
const int N = ST.size();
::std::copy(T_begin, T_end, ::std::back_inserter(ST));
const int M = ST.size() - N;
ST.push_back(::tools::mex(ST.begin(), ST.end()));
::std::rotate(::std::next(ST.begin(), N), ::std::prev(ST.end()), ST.end());
const auto sa = ::atcoder::suffix_array(ST);
const auto lcpa = ::atcoder::lcp_array(ST, sa);
int a = 0;
int c = 0;
int l = 0;
const auto is_in_S = [&](const int i) { return i < N; };
const auto is_in_T = [&](const int i) { return N + 1 <= i; };
for (int i = 1; i < N + M + 1; ++i) {
if (is_in_S(sa[i]) && is_in_T(sa[i - 1])) {
if (::tools::chmax(l, lcpa[i - 1])) {
a = sa[i];
c = sa[i - 1] - (N + 1);
}
} else if (is_in_T(sa[i]) && is_in_S(sa[i - 1])) {
if (::tools::chmax(l, lcpa[i - 1])) {
a = sa[i - 1];
c = sa[i] - (N + 1);
}
}
}
return ::std::make_tuple(a, a + l, c, c + l);
}
}
#endif
#line 1 "tools/longest_common_substring.hpp"
#include <tuple>
#include <cstddef>
#include <type_traits>
#include <string>
#include <vector>
#include <algorithm>
#include <iterator>
#line 1 "lib/ac-library/atcoder/string.hpp"
#line 5 "lib/ac-library/atcoder/string.hpp"
#include <cassert>
#include <numeric>
#line 9 "lib/ac-library/atcoder/string.hpp"
namespace atcoder {
namespace internal {
std::vector<int> sa_naive(const std::vector<int>& s) {
int n = int(s.size());
std::vector<int> sa(n);
std::iota(sa.begin(), sa.end(), 0);
std::sort(sa.begin(), sa.end(), [&](int l, int r) {
if (l == r) return false;
while (l < n && r < n) {
if (s[l] != s[r]) return s[l] < s[r];
l++;
r++;
}
return l == n;
});
return sa;
}
std::vector<int> sa_doubling(const std::vector<int>& s) {
int n = int(s.size());
std::vector<int> sa(n), rnk = s, tmp(n);
std::iota(sa.begin(), sa.end(), 0);
for (int k = 1; k < n; k *= 2) {
auto cmp = [&](int x, int y) {
if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
int rx = x + k < n ? rnk[x + k] : -1;
int ry = y + k < n ? rnk[y + k] : -1;
return rx < ry;
};
std::sort(sa.begin(), sa.end(), cmp);
tmp[sa[0]] = 0;
for (int i = 1; i < n; i++) {
tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
}
std::swap(tmp, rnk);
}
return sa;
}
// SA-IS, linear-time suffix array construction
// Reference:
// G. Nong, S. Zhang, and W. H. Chan,
// Two Efficient Algorithms for Linear Time Suffix Array Construction
template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
int n = int(s.size());
if (n == 0) return {};
if (n == 1) return {0};
if (n == 2) {
if (s[0] < s[1]) {
return {0, 1};
} else {
return {1, 0};
}
}
if (n < THRESHOLD_NAIVE) {
return sa_naive(s);
}
if (n < THRESHOLD_DOUBLING) {
return sa_doubling(s);
}
std::vector<int> sa(n);
std::vector<bool> ls(n);
for (int i = n - 2; i >= 0; i--) {
ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
}
std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
for (int i = 0; i < n; i++) {
if (!ls[i]) {
sum_s[s[i]]++;
} else {
sum_l[s[i] + 1]++;
}
}
for (int i = 0; i <= upper; i++) {
sum_s[i] += sum_l[i];
if (i < upper) sum_l[i + 1] += sum_s[i];
}
auto induce = [&](const std::vector<int>& lms) {
std::fill(sa.begin(), sa.end(), -1);
std::vector<int> buf(upper + 1);
std::copy(sum_s.begin(), sum_s.end(), buf.begin());
for (auto d : lms) {
if (d == n) continue;
sa[buf[s[d]]++] = d;
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
sa[buf[s[n - 1]]++] = n - 1;
for (int i = 0; i < n; i++) {
int v = sa[i];
if (v >= 1 && !ls[v - 1]) {
sa[buf[s[v - 1]]++] = v - 1;
}
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
for (int i = n - 1; i >= 0; i--) {
int v = sa[i];
if (v >= 1 && ls[v - 1]) {
sa[--buf[s[v - 1] + 1]] = v - 1;
}
}
};
std::vector<int> lms_map(n + 1, -1);
int m = 0;
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms_map[i] = m++;
}
}
std::vector<int> lms;
lms.reserve(m);
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms.push_back(i);
}
}
induce(lms);
if (m) {
std::vector<int> sorted_lms;
sorted_lms.reserve(m);
for (int v : sa) {
if (lms_map[v] != -1) sorted_lms.push_back(v);
}
std::vector<int> rec_s(m);
int rec_upper = 0;
rec_s[lms_map[sorted_lms[0]]] = 0;
for (int i = 1; i < m; i++) {
int l = sorted_lms[i - 1], r = sorted_lms[i];
int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
bool same = true;
if (end_l - l != end_r - r) {
same = false;
} else {
while (l < end_l) {
if (s[l] != s[r]) {
break;
}
l++;
r++;
}
if (l == n || s[l] != s[r]) same = false;
}
if (!same) rec_upper++;
rec_s[lms_map[sorted_lms[i]]] = rec_upper;
}
auto rec_sa =
sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);
for (int i = 0; i < m; i++) {
sorted_lms[i] = lms[rec_sa[i]];
}
induce(sorted_lms);
}
return sa;
}
} // namespace internal
std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
assert(0 <= upper);
for (int d : s) {
assert(0 <= d && d <= upper);
}
auto sa = internal::sa_is(s, upper);
return sa;
}
template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
int n = int(s.size());
std::vector<int> idx(n);
iota(idx.begin(), idx.end(), 0);
sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
std::vector<int> s2(n);
int now = 0;
for (int i = 0; i < n; i++) {
if (i && s[idx[i - 1]] != s[idx[i]]) now++;
s2[idx[i]] = now;
}
return internal::sa_is(s2, now);
}
std::vector<int> suffix_array(const std::string& s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return internal::sa_is(s2, 255);
}
// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
const std::vector<int>& sa) {
int n = int(s.size());
assert(n >= 1);
std::vector<int> rnk(n);
for (int i = 0; i < n; i++) {
rnk[sa[i]] = i;
}
std::vector<int> lcp(n - 1);
int h = 0;
for (int i = 0; i < n; i++) {
if (h > 0) h--;
if (rnk[i] == 0) continue;
int j = sa[rnk[i] - 1];
for (; j + h < n && i + h < n; h++) {
if (s[j + h] != s[i + h]) break;
}
lcp[rnk[i] - 1] = h;
}
return lcp;
}
std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return lcp_array(s2, sa);
}
// Reference:
// D. Gusfield,
// Algorithms on Strings, Trees, and Sequences: Computer Science and
// Computational Biology
template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
int n = int(s.size());
if (n == 0) return {};
std::vector<int> z(n);
z[0] = 0;
for (int i = 1, j = 0; i < n; i++) {
int& k = z[i];
k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
while (i + k < n && s[k] == s[i + k]) k++;
if (j + z[j] < i + z[i]) j = i;
}
z[0] = n;
return z;
}
std::vector<int> z_algorithm(const std::string& s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return z_algorithm(s2);
}
} // namespace atcoder
#line 1 "tools/mex.hpp"
#line 5 "tools/mex.hpp"
#include <utility>
#line 10 "tools/mex.hpp"
namespace tools {
template <typename InputIterator>
::std::decay_t<decltype(*::std::declval<InputIterator>())> mex(InputIterator begin, InputIterator end) {
using T = ::std::decay_t<decltype(*::std::declval<InputIterator>())>;
const ::std::vector<T> orig(begin, end);
const ::std::size_t n = orig.size();
assert(::std::all_of(orig.begin(), orig.end(), [](const auto& o) { return o >= 0; }));
::std::vector<bool> exists(n, false);
for (const ::std::size_t o : orig) {
if (o < n) {
exists[o] = true;
}
}
for (::std::size_t i = 0; i < n; ++i) {
if (!exists[i]) {
return i;
}
}
return n;
}
}
#line 1 "tools/chmax.hpp"
#line 6 "tools/chmax.hpp"
namespace tools {
template <typename M, typename N>
bool chmax(M& lhs, const N& rhs) {
bool updated;
if constexpr (::std::is_integral_v<M> && ::std::is_integral_v<N>) {
updated = ::std::cmp_less(lhs, rhs);
} else {
updated = lhs < rhs;
}
if (updated) lhs = rhs;
return updated;
}
}
#line 14 "tools/longest_common_substring.hpp"
namespace tools {
template <typename InputIterator>
::std::tuple<::std::size_t, ::std::size_t, ::std::size_t, ::std::size_t> longest_common_substring(const InputIterator S_begin, const InputIterator S_end, const InputIterator T_begin, const InputIterator T_end) {
using Z = ::std::decay_t<decltype(*::std::declval<InputIterator>())>;
using Container = ::std::conditional_t<::std::is_same_v<Z, char>, ::std::string, ::std::vector<Z>>;
Container ST(S_begin, S_end);
const int N = ST.size();
::std::copy(T_begin, T_end, ::std::back_inserter(ST));
const int M = ST.size() - N;
ST.push_back(::tools::mex(ST.begin(), ST.end()));
::std::rotate(::std::next(ST.begin(), N), ::std::prev(ST.end()), ST.end());
const auto sa = ::atcoder::suffix_array(ST);
const auto lcpa = ::atcoder::lcp_array(ST, sa);
int a = 0;
int c = 0;
int l = 0;
const auto is_in_S = [&](const int i) { return i < N; };
const auto is_in_T = [&](const int i) { return N + 1 <= i; };
for (int i = 1; i < N + M + 1; ++i) {
if (is_in_S(sa[i]) && is_in_T(sa[i - 1])) {
if (::tools::chmax(l, lcpa[i - 1])) {
a = sa[i];
c = sa[i - 1] - (N + 1);
}
} else if (is_in_T(sa[i]) && is_in_S(sa[i - 1])) {
if (::tools::chmax(l, lcpa[i - 1])) {
a = sa[i - 1];
c = sa[i] - (N + 1);
}
}
}
return ::std::make_tuple(a, a + l, c, c + l);
}
}