This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "tools/dual_segtree.hpp"
It is a pair of a monoid $(S, \cdot, e)$ and a sequence $(a_0, a_1, \ldots, a_{n - 1})$ on $S$. It provides the following operations.
dual_segtree<M> a(int n);
It creates a sequence $(a_0, a_1, \ldots, a_{n - 1})$ filled in M::e()
.
typename M::T
, $y$ in typename M::T
and $z$ in typename M::T
, M::op(M::op(x, y), z)
$=$ M::op(x, M::op(y, z))
.typename M::T
, M::op(M::e(), x)
$=$ M::op(x, M::e())
$=$ x
.void a.apply(int l, int r, typename M::T x);
For all $i$ such that $l \leq i < r$, it updates $a_i$ to M::op
$(x, a_i)$.
typename M::T a.get(int i);
It returns $a_i$.
#ifndef TOOLS_DUAL_SEGTREE_HPP
#define TOOLS_DUAL_SEGTREE_HPP
#include <vector>
#include "tools/ceil_log2.hpp"
#include "tools/pow2.hpp"
namespace tools {
template <typename M>
class dual_segtree {
using T = typename M::T;
int height;
::std::vector<T> lazy;
void propagate(const int node_id) {
if(this->lazy[node_id] == M::e()) return;
this->lazy[(node_id << 1) | 0] = M::op(this->lazy[node_id], this->lazy[(node_id << 1) | 0]);
this->lazy[(node_id << 1) | 1] = M::op(this->lazy[node_id], this->lazy[(node_id << 1) | 1]);
this->lazy[node_id] = M::e();
}
void thrust(const int node_id) {
for (int h = this->height; h > 0; --h) {
this->propagate(node_id >> h);
}
}
int capacity() const {
return this->lazy.size() / 2;
}
public:
dual_segtree() = default;
explicit dual_segtree(const int n) :
height(::tools::ceil_log2(n)),
lazy(::tools::pow2(this->height + 1), M::e()) {
}
void apply(const int a, const int b, const T& x) {
if(a >= b) return;
const int a_id = a + this->capacity();
const int b_id = b + this->capacity() - 1;
this->thrust(a_id);
this->thrust(b_id);
for (int l = a_id, r = b_id + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) {
this->lazy[l] = M::op(x, this->lazy[l]);
++l;
}
if (r & 1) {
--r;
this->lazy[r] = M::op(x, this->lazy[r]);
}
}
}
T get(const int a) {
const int node_id = a + this->capacity();
this->thrust(node_id);
return this->lazy[node_id];
}
};
}
#endif
#line 1 "tools/dual_segtree.hpp"
#include <vector>
#line 1 "tools/ceil_log2.hpp"
#include <cassert>
#line 1 "tools/bit_width.hpp"
#include <bit>
#line 6 "tools/bit_width.hpp"
#include <type_traits>
#line 1 "tools/is_integral.hpp"
#line 5 "tools/is_integral.hpp"
namespace tools {
template <typename T>
struct is_integral : ::std::is_integral<T> {};
template <typename T>
inline constexpr bool is_integral_v = ::tools::is_integral<T>::value;
}
#line 1 "tools/is_signed.hpp"
#line 5 "tools/is_signed.hpp"
namespace tools {
template <typename T>
struct is_signed : ::std::is_signed<T> {};
template <typename T>
inline constexpr bool is_signed_v = ::tools::is_signed<T>::value;
}
#line 1 "tools/make_unsigned.hpp"
#line 5 "tools/make_unsigned.hpp"
namespace tools {
template <typename T>
struct make_unsigned : ::std::make_unsigned<T> {};
template <typename T>
using make_unsigned_t = typename ::tools::make_unsigned<T>::type;
}
#line 10 "tools/bit_width.hpp"
namespace tools {
template <typename T>
constexpr int bit_width(T) noexcept;
template <typename T>
constexpr int bit_width(const T x) noexcept {
static_assert(::tools::is_integral_v<T> && !::std::is_same_v<::std::remove_cv_t<T>, bool>);
if constexpr (::tools::is_signed_v<T>) {
assert(x >= 0);
return ::tools::bit_width<::tools::make_unsigned_t<T>>(x);
} else {
return ::std::bit_width(x);
}
}
}
#line 6 "tools/ceil_log2.hpp"
namespace tools {
template <typename T>
constexpr T ceil_log2(T x) noexcept {
assert(x > 0);
return ::tools::bit_width(x - 1);
}
}
#line 1 "tools/pow2.hpp"
#line 5 "tools/pow2.hpp"
#include <cstddef>
namespace tools {
template <typename T, typename ::std::enable_if<::std::is_unsigned<T>::value, ::std::nullptr_t>::type = nullptr>
constexpr T pow2(const T x) {
return static_cast<T>(1) << x;
}
template <typename T, typename ::std::enable_if<::std::is_signed<T>::value, ::std::nullptr_t>::type = nullptr>
constexpr T pow2(const T x) {
return static_cast<T>(static_cast<typename ::std::make_unsigned<T>::type>(1) << static_cast<typename ::std::make_unsigned<T>::type>(x));
}
}
#line 7 "tools/dual_segtree.hpp"
namespace tools {
template <typename M>
class dual_segtree {
using T = typename M::T;
int height;
::std::vector<T> lazy;
void propagate(const int node_id) {
if(this->lazy[node_id] == M::e()) return;
this->lazy[(node_id << 1) | 0] = M::op(this->lazy[node_id], this->lazy[(node_id << 1) | 0]);
this->lazy[(node_id << 1) | 1] = M::op(this->lazy[node_id], this->lazy[(node_id << 1) | 1]);
this->lazy[node_id] = M::e();
}
void thrust(const int node_id) {
for (int h = this->height; h > 0; --h) {
this->propagate(node_id >> h);
}
}
int capacity() const {
return this->lazy.size() / 2;
}
public:
dual_segtree() = default;
explicit dual_segtree(const int n) :
height(::tools::ceil_log2(n)),
lazy(::tools::pow2(this->height + 1), M::e()) {
}
void apply(const int a, const int b, const T& x) {
if(a >= b) return;
const int a_id = a + this->capacity();
const int b_id = b + this->capacity() - 1;
this->thrust(a_id);
this->thrust(b_id);
for (int l = a_id, r = b_id + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) {
this->lazy[l] = M::op(x, this->lazy[l]);
++l;
}
if (r & 1) {
--r;
this->lazy[r] = M::op(x, this->lazy[r]);
}
}
}
T get(const int a) {
const int node_id = a + this->capacity();
this->thrust(node_id);
return this->lazy[node_id];
}
};
}