proconlib

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub anqooqie/proconlib

:warning: tests/lowlink/ncc_without_vertex.test.cpp

Depends on

Code

// competitive-verifier: PROBLEM https://atcoder.jp/contests/abc334/tasks/abc334_g
// competitive-verifier: IGNORE

#include <iostream>
#include <string>
#include <vector>
#include "atcoder/modint.hpp"
#include "tools/lowlink.hpp"

using mint = atcoder::modint998244353;

int main() {
  std::cin.tie(nullptr);
  std::ios_base::sync_with_stdio(false);

  int H, W;
  std::cin >> H >> W;
  std::vector<std::string> S(H);
  for (auto&& S_i : S) std::cin >> S_i;

  auto V = std::vector(H, std::vector<int>(W, -1));
  int k = 0;
  for (int i = 0; i < H; ++i) {
    for (int j = 0; j < W; ++j) {
      if (S[i][j] == '#') {
        V[i][j] = k++;
      }
    }
  }

  tools::lowlink graph(k);
  for (int i = 0; i < H; ++i) {
    for (int j = 0; j < W; ++j) {
      if (i + 1 < H && S[i][j] == '#' && S[i + 1][j] == '#') {
        graph.add_edge(V[i][j], V[i + 1][j]);
      }
      if (j + 1 < W && S[i][j] == '#' && S[i][j + 1] == '#') {
        graph.add_edge(V[i][j], V[i][j + 1]);
      }
    }
  }

  graph.build();

  auto answer = mint::raw(0);
  for (int v = 0; v < k; ++v) {
    answer += mint::raw(graph.ncc_without_vertex(v));
  }
  answer /= mint::raw(k);

  std::cout << answer.val() << '\n';
  return 0;
}
#line 1 "tests/lowlink/ncc_without_vertex.test.cpp"
// competitive-verifier: PROBLEM https://atcoder.jp/contests/abc334/tasks/abc334_g
// competitive-verifier: IGNORE

#include <iostream>
#include <string>
#include <vector>
#line 1 "lib/ac-library/atcoder/modint.hpp"



#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

#line 1 "lib/ac-library/atcoder/internal_math.hpp"



#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned long long y = x * _m;
        return (unsigned int)(z - y + (z < y ? _m : 0));
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#line 1 "lib/ac-library/atcoder/internal_type_traits.hpp"



#line 7 "lib/ac-library/atcoder/internal_type_traits.hpp"

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


#line 14 "lib/ac-library/atcoder/modint.hpp"

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


#line 1 "tools/lowlink.hpp"



#include <algorithm>
#line 6 "tools/lowlink.hpp"
#include <cstddef>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <stack>
#include <tuple>
#line 1 "tools/chmin.hpp"



#line 6 "tools/chmin.hpp"

namespace tools {

  template <typename M, typename N>
  bool chmin(M& lhs, const N& rhs) {
    bool updated;
    if constexpr (::std::is_integral_v<M> && ::std::is_integral_v<N>) {
      updated = ::std::cmp_less(rhs, lhs);
    } else {
      updated = rhs < lhs;
    }
    if (updated) lhs = rhs;
    return updated;
  }
}


#line 1 "tools/fix.hpp"



#line 6 "tools/fix.hpp"

namespace tools {
  template <typename F>
  struct fix : F {
    template <typename G>
    fix(G&& g) : F({::std::forward<G>(g)}) {
    }

    template <typename... Args>
    decltype(auto) operator()(Args&&... args) const {
      return F::operator()(*this, ::std::forward<Args>(args)...);
    }
  };

  template <typename F>
  fix(F&&) -> fix<::std::decay_t<F>>;
}


#line 1 "tools/less_by.hpp"



namespace tools {

  template <class F>
  class less_by {
  private:
    F selector;

  public:
    less_by(const F& selector) : selector(selector) {
    }

    template <class T>
    bool operator()(const T& x, const T& y) const {
      return selector(x) < selector(y);
    }
  };
}


#line 17 "tools/lowlink.hpp"

namespace tools {
  class lowlink {
  public:
    struct edge {
      int from;
      int to;
    };

  private:
    ::std::vector<edge> m_edges;
    ::std::vector<::std::vector<int>> m_graph;
    bool m_built;
    ::std::vector<int> m_from;
    ::std::vector<int> m_ord;
    ::std::vector<int> m_low;
    int m_ncc;
    ::std::vector<int> m_ncc_without_vertex;

  public:
    class neighbors_iterable {
    private:
      ::tools::lowlink const *m_parent;
      int m_v;

    public:
      class iterator {
      private:
        ::tools::lowlink const *m_parent;
        int m_v;
        int m_i;

      public:
        using difference_type = ::std::ptrdiff_t;
        using value_type = int;
        using reference = const int&;
        using pointer = const int*;
        using iterator_category = ::std::input_iterator_tag;

        iterator() = default;
        iterator(::tools::lowlink const * const parent, const int v, const int i) : m_parent(parent), m_v(v), m_i(i) {
        }

        value_type operator*() const {
          const auto& edge = this->m_parent->m_edges[this->m_parent->m_graph[this->m_v][this->m_i]];
          return edge.from ^ edge.to ^ this->m_v;
        }
        iterator& operator++() {
          ++this->m_i;
          return *this;
        }
        iterator operator++(int) {
          const auto self = *this;
          ++*this;
          return self;
        }
        friend bool operator==(const iterator& lhs, const iterator& rhs) {
          assert(lhs.m_parent == rhs.m_parent);
          assert(lhs.m_v == rhs.m_v);
          return lhs.m_i == rhs.m_i;
        }
        friend bool operator!=(const iterator& lhs, const iterator& rhs) {
          return !(lhs == rhs);
        }
      };

      neighbors_iterable() = default;
      neighbors_iterable(::tools::lowlink const * const parent, const int v) : m_parent(parent), m_v(v) {
      }

      iterator begin() const {
        return iterator(this->m_parent, this->m_v, 0);
      };
      iterator end() const {
        return iterator(this->m_parent, this->m_v, this->m_parent->m_graph[this->m_v].size());
      }
    };

    class edges_iterable {
    private:
      ::tools::lowlink const *m_parent;
      int m_v;

    public:
      class iterator {
      private:
        ::tools::lowlink const *m_parent;
        int m_v;
        int m_i;

      public:
        using difference_type = ::std::ptrdiff_t;
        using value_type = edge;
        using reference = const edge&;
        using pointer = const edge*;
        using iterator_category = ::std::input_iterator_tag;

        iterator() = default;
        iterator(::tools::lowlink const * const parent, const int v, const int i) : m_parent(parent), m_v(v), m_i(i) {
        }

        reference operator*() const {
          return this->m_parent->m_edges[this->m_parent->m_graph[this->m_v][this->m_i]];
        }
        iterator& operator++() {
          ++this->m_i;
          return *this;
        }
        iterator operator++(int) {
          const auto self = *this;
          ++*this;
          return self;
        }
        friend bool operator==(const iterator& lhs, const iterator& rhs) {
          assert(lhs.m_parent == rhs.m_parent);
          assert(lhs.m_v == rhs.m_v);
          return lhs.m_i == rhs.m_i;
        }
        friend bool operator!=(const iterator& lhs, const iterator& rhs) {
          return !(lhs == rhs);
        }
      };

      edges_iterable() = default;
      edges_iterable(::tools::lowlink const * const parent, const int v) : m_parent(parent), m_v(v) {
      }

      iterator begin() const {
        return iterator(this->m_parent, this->m_v, 0);
      };
      iterator end() const {
        return iterator(this->m_parent, this->m_v, this->m_parent->m_graph[this->m_v].size());
      }
    };

    class vchildren_iterable {
    private:
      ::tools::lowlink const *m_parent;
      int m_v;

    public:
      class iterator {
      private:
        ::tools::lowlink const *m_parent;
        int m_v;
        int m_i;

      public:
        using difference_type = ::std::ptrdiff_t;
        using value_type = int;
        using reference = const int&;
        using pointer = const int*;
        using iterator_category = ::std::input_iterator_tag;

        iterator() = default;
        iterator(::tools::lowlink const * const parent, const int v, const int i) : m_parent(parent), m_v(v), m_i(i) {
          const auto& eids = this->m_parent->m_graph[this->m_v];
          for (; this->m_i < eids.size() && [&]() {
            const auto eid = eids[this->m_i];
            const auto& edge = this->m_parent->m_edges[eid];
            return this->m_parent->m_from[edge.from ^ edge.to ^ this->m_v] != eid;
          }(); ++this->m_i);
        }

        value_type operator*() const {
          const auto& edge = this->m_parent->m_edges[this->m_parent->m_graph[this->m_v][this->m_i]];
          return edge.from ^ edge.to ^ this->m_v;
        }
        iterator& operator++() {
          const auto& eids = this->m_parent->m_graph[this->m_v];
          assert(this->m_i < eids.size());

          for (++this->m_i; this->m_i < eids.size() && [&]() {
            const auto eid = eids[this->m_i];
            const auto& edge = this->m_parent->m_edges[eid];
            return this->m_parent->m_from[edge.from ^ edge.to ^ this->m_v] != eid;
          }(); ++this->m_i);

          return *this;
        }
        iterator operator++(int) {
          const auto self = *this;
          ++*this;
          return self;
        }
        friend bool operator==(const iterator& lhs, const iterator& rhs) {
          assert(lhs.m_parent == rhs.m_parent);
          assert(lhs.m_v == rhs.m_v);
          return lhs.m_i == rhs.m_i;
        }
        friend bool operator!=(const iterator& lhs, const iterator& rhs) {
          return !(lhs == rhs);
        }
      };

      vchildren_iterable() = default;
      vchildren_iterable(::tools::lowlink const * const parent, const int v) : m_parent(parent), m_v(v) {
      }

      iterator begin() const {
        return iterator(this->m_parent, this->m_v, 0);
      };
      iterator end() const {
        return iterator(this->m_parent, this->m_v, this->m_parent->m_graph[this->m_v].size());
      }
    };

    class echildren_iterable {
    private:
      ::tools::lowlink const *m_parent;
      int m_v;

    public:
      class iterator {
      private:
        ::tools::lowlink const *m_parent;
        int m_v;
        int m_i;

      public:
        using difference_type = ::std::ptrdiff_t;
        using value_type = edge;
        using reference = const edge&;
        using pointer = const edge*;
        using iterator_category = ::std::input_iterator_tag;

        iterator() = default;
        iterator(::tools::lowlink const * const parent, const int v, const int i) : m_parent(parent), m_v(v), m_i(i) {
          const auto& eids = this->m_parent->m_graph[this->m_v];
          for (; this->m_i < eids.size() && [&]() {
            const auto eid = eids[this->m_i];
            const auto& edge = this->m_parent->m_edges[eid];
            return this->m_parent->m_from[edge.from ^ edge.to ^ this->m_v] != eid;
          }(); ++this->m_i);
        }

        reference operator*() const {
          return this->m_parent->m_edges[this->m_parent->m_graph[this->m_v][this->m_i]];
        }
        iterator& operator++() {
          const auto& eids = this->m_parent->m_graph[this->m_v];
          assert(this->m_i < eids.size());

          for (++this->m_i; this->m_i < eids.size() && [&]() {
            const auto eid = eids[this->m_i];
            const auto& edge = this->m_parent->m_edges[eid];
            return this->m_parent->m_from[edge.from ^ edge.to ^ this->m_v] != eid;
          }(); ++this->m_i);

          return *this;
        }
        iterator operator++(int) {
          const auto self = *this;
          ++*this;
          return self;
        }
        friend bool operator==(const iterator& lhs, const iterator& rhs) {
          assert(lhs.m_parent == rhs.m_parent);
          assert(lhs.m_v == rhs.m_v);
          return lhs.m_i == rhs.m_i;
        }
        friend bool operator!=(const iterator& lhs, const iterator& rhs) {
          return !(lhs == rhs);
        }
      };

      echildren_iterable() = default;
      echildren_iterable(::tools::lowlink const * const parent, const int v) : m_parent(parent), m_v(v) {
      }

      iterator begin() const {
        return iterator(this->m_parent, this->m_v, 0);
      };
      iterator end() const {
        return iterator(this->m_parent, this->m_v, this->m_parent->m_graph[this->m_v].size());
      }
    };

    lowlink() = default;
    explicit lowlink(const int n) : m_graph(n), m_built(false) {
    }

    int size() const {
      return this->m_graph.size();
    }

    int add_edge(int u, int v) {
      assert(!this->m_built);
      assert(0 <= u && u < this->size());
      assert(0 <= v && v < this->size());
      ::std::tie(u, v) = ::std::minmax({u, v});
      this->m_edges.push_back(edge{u, v});
      this->m_graph[u].push_back(this->m_edges.size() - 1);
      this->m_graph[v].push_back(this->m_edges.size() - 1);
      return this->m_edges.size() - 1;
    }

    const edge& get_edge(const int k) const {
      assert(0 <= k && k < this->m_edges.size());
      return this->m_edges[k];
    }

    const ::std::vector<edge>& edges() const {
      return this->m_edges;
    }

    neighbors_iterable neighbors(const int v) const {
      assert(0 <= v && v < this->size());
      return neighbors_iterable(this, v);
    }

    edges_iterable edges(const int v) const {
      assert(0 <= v && v < this->size());
      return edges_iterable(this, v);
    }

    void build() {
      assert(!this->m_built);
      this->m_built = true;

      const auto N_A = -1;

      this->m_from.assign(this->size(), N_A);
      this->m_ord.assign(this->size(), N_A);
      this->m_low.assign(this->size(), N_A);
      this->m_ncc = 0;

      for (int r = 0; r < this->size(); ++r) {
        if (this->m_ord[r] != N_A) continue;

        ++this->m_ncc;
        int next_ord = 0;

        ::std::stack<::std::pair<int, int>> stack;
        stack.emplace(r, N_A);
        stack.emplace(r, N_A - 1);
        while (!stack.empty()) {
          const auto [v, from] = stack.top();
          stack.pop();

          if (from != N_A) {
            if (this->m_ord[v] != N_A) continue;

            this->m_from[v] = from;
            this->m_ord[v] = next_ord++;

            for (const auto eid : this->m_graph[v]) {
              const auto& edge = this->m_edges[eid];
              const auto u = edge.from ^ edge.to ^ v;
              if (this->m_ord[u] != N_A) continue;

              stack.emplace(u, N_A);
              stack.emplace(u, eid);
            }
          } else {
            if (this->m_low[v] != N_A) continue;

            this->m_low[v] = this->m_ord[v];
            for (const auto eid : this->m_graph[v]) {
              const auto& edge = this->m_edges[eid];
              const auto u = edge.from ^ edge.to ^ v;
              if (this->m_ord[u] < this->m_ord[v] && eid != this->m_from[v]) {
                ::tools::chmin(this->m_low[v], this->m_ord[u]);
              } else if (this->m_ord[u] > this->m_ord[v] && eid == this->m_from[u]) {
                ::tools::chmin(this->m_low[v], this->m_low[u]);
              }
            }
          }
        }

        this->m_from[r] = N_A;
      }

      this->m_ncc_without_vertex.assign(this->size(), this->m_ncc);
      for (int v = 0; v < this->size(); ++v) {
        if (this->m_ord[v] == 0) {
          this->m_ncc_without_vertex[v] += ::std::distance(this->echildren(v).begin(), this->echildren(v).end());
          --this->m_ncc_without_vertex[v];
        } else {
          for (const auto& edge : this->echildren(v)) {
            const auto u = edge.from ^ edge.to ^ v;
            if (this->m_ord[v] <= this->m_low[u]) {
              ++this->m_ncc_without_vertex[v];
            }
          }
        }
      }
    }

    int vparent(const int v) const {
      assert(this->m_built);
      assert(0 <= v && v < this->size());
      assert(this->m_ord[v] > 0);

      const auto& edge = this->m_edges[this->m_from[v]];
      return edge.from ^ edge.to ^ v;
    }

    const edge& eparent(const int v) const {
      assert(this->m_built);
      assert(0 <= v && v < this->size());
      assert(this->m_ord[v] > 0);

      return this->m_edges[this->m_from[v]];
    }

    vchildren_iterable vchildren(const int v) const {
      assert(this->m_built);
      assert(0 <= v && v < this->size());

      return vchildren_iterable(this, v);
    }

    echildren_iterable echildren(const int v) const {
      assert(this->m_built);
      assert(0 <= v && v < this->size());

      return echildren_iterable(this, v);
    }

    int ord(const int v) const {
      assert(this->m_built);
      assert(0 <= v && v < this->size());

      return this->m_ord[v];
    }

    int low(const int v) const {
      assert(this->m_built);
      assert(0 <= v && v < this->size());

      return this->m_low[v];
    }

    int ncc() const {
      assert(this->m_built);

      return this->m_ncc;
    }

    int ncc_without_vertex(const int v) const {
      assert(this->m_built);
      assert(0 <= v && v < this->size());

      return this->m_ncc_without_vertex[v];
    }

    bool is_articulation_point(const int v) const {
      assert(this->m_built);
      assert(0 <= v && v < this->size());

      return this->m_ncc_without_vertex[v] > this->m_ncc;
    }

    bool is_bridge(const int k) const {
      assert(this->m_built);
      assert(0 <= k && k < this->m_edges.size());

      const auto [u, v] = ::std::minmax({this->m_edges[k].from, this->m_edges[k].to}, ::tools::less_by([&](const auto w) { return this->m_ord[w]; }));
      return this->m_ord[u] < this->m_low[v];
    }

    ::std::vector<::std::vector<int>> biconnected_components() const {
      assert(this->m_built);

      ::std::vector<::std::vector<int>> groups;

      for (int r = 0; r < this->size(); ++r) {
        if (this->ord(r) == 0) {
          if (this->m_ncc_without_vertex[r] < this->m_ncc) {
            groups.emplace_back(::std::initializer_list<int>{r});
          } else {
            ::tools::fix([&](auto&& dfs, const auto g, const auto v) -> void {
              for (const auto u : this->vchildren(v)) {
                if (this->ord(v) <= this->low(u)) {
                  groups.emplace_back(::std::initializer_list<int>{v, u});
                  dfs(groups.size() - 1, u);
                } else {
                  groups[g].push_back(u);
                  dfs(g, u);
                }
              }
            })(-1, r);
          }
        }
      }

      return groups;
    }
  };
}


#line 9 "tests/lowlink/ncc_without_vertex.test.cpp"

using mint = atcoder::modint998244353;

int main() {
  std::cin.tie(nullptr);
  std::ios_base::sync_with_stdio(false);

  int H, W;
  std::cin >> H >> W;
  std::vector<std::string> S(H);
  for (auto&& S_i : S) std::cin >> S_i;

  auto V = std::vector(H, std::vector<int>(W, -1));
  int k = 0;
  for (int i = 0; i < H; ++i) {
    for (int j = 0; j < W; ++j) {
      if (S[i][j] == '#') {
        V[i][j] = k++;
      }
    }
  }

  tools::lowlink graph(k);
  for (int i = 0; i < H; ++i) {
    for (int j = 0; j < W; ++j) {
      if (i + 1 < H && S[i][j] == '#' && S[i + 1][j] == '#') {
        graph.add_edge(V[i][j], V[i + 1][j]);
      }
      if (j + 1 < W && S[i][j] == '#' && S[i][j + 1] == '#') {
        graph.add_edge(V[i][j], V[i][j + 1]);
      }
    }
  }

  graph.build();

  auto answer = mint::raw(0);
  for (int v = 0; v < k; ++v) {
    answer += mint::raw(graph.ncc_without_vertex(v));
  }
  answer /= mint::raw(k);

  std::cout << answer.val() << '\n';
  return 0;
}
Back to top page