This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/point_set_range_composite
#include <iostream>
#include <utility>
#include <variant>
#include <vector>
#include "atcoder/modint.hpp"
#include "tools/lazy_segtree.hpp"
#include "tools/nop_mapping.hpp"
#include "tools/nop_monoid.hpp"
template <typename SM>
using segtree = tools::lazy_segtree<SM, tools::nop_monoid, tools::nop_mapping<std::monostate, typename SM::T>>;
using mint = atcoder::modint998244353;
struct SM {
using T = std::pair<mint, mint>;
static T op(const T& f, const T& g) {
return {g.first * f.first, g.first * f.second + g.second};
}
static T e() {
return {mint::raw(1), mint::raw(0)};
}
};
using S = typename SM::T;
int main() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
int N, Q;
std::cin >> N >> Q;
segtree<SM> f([&]() {
std::vector<std::pair<mint, mint>> v(N);
for (auto& [a, b] : v) {
int x, y;
std::cin >> x >> y;
a = mint::raw(x);
b = mint::raw(y);
}
return v;
}());
for (int q = 0; q < Q; ++q) {
int t;
std::cin >> t;
if (t == 0) {
int p, c, d;
std::cin >> p >> c >> d;
f.set(p, {mint::raw(c), mint::raw(d)});
} else {
int l, r, x;
std::cin >> l >> r >> x;
const auto [a, b] = f.prod(l, r);
std::cout << (a * mint::raw(x) + b).val() << '\n';
}
}
return 0;
}
#line 1 "tests/lazy_segtree/segtree.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/point_set_range_composite
#include <iostream>
#include <utility>
#include <variant>
#include <vector>
#line 1 "lib/ac-library/atcoder/modint.hpp"
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#line 1 "lib/ac-library/atcoder/internal_math.hpp"
#line 5 "lib/ac-library/atcoder/internal_math.hpp"
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m`
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned long long y = x * _m;
return (unsigned int)(z - y + (z < y ? _m : 0));
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#line 1 "lib/ac-library/atcoder/internal_type_traits.hpp"
#line 7 "lib/ac-library/atcoder/internal_type_traits.hpp"
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#line 14 "lib/ac-library/atcoder/modint.hpp"
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#line 1 "tools/lazy_segtree.hpp"
#include <algorithm>
#line 6 "tools/lazy_segtree.hpp"
#include <functional>
#line 8 "tools/lazy_segtree.hpp"
#include <ranges>
#line 1 "tools/ceil_log2.hpp"
#line 1 "tools/bit_width.hpp"
#include <bit>
#line 1 "tools/is_integral.hpp"
#line 5 "tools/is_integral.hpp"
namespace tools {
template <typename T>
struct is_integral : ::std::is_integral<T> {};
template <typename T>
inline constexpr bool is_integral_v = ::tools::is_integral<T>::value;
}
#line 1 "tools/is_signed.hpp"
#line 5 "tools/is_signed.hpp"
namespace tools {
template <typename T>
struct is_signed : ::std::is_signed<T> {};
template <typename T>
inline constexpr bool is_signed_v = ::tools::is_signed<T>::value;
}
#line 1 "tools/make_unsigned.hpp"
#line 5 "tools/make_unsigned.hpp"
namespace tools {
template <typename T>
struct make_unsigned : ::std::make_unsigned<T> {};
template <typename T>
using make_unsigned_t = typename ::tools::make_unsigned<T>::type;
}
#line 10 "tools/bit_width.hpp"
namespace tools {
template <typename T>
constexpr int bit_width(T) noexcept;
template <typename T>
constexpr int bit_width(const T x) noexcept {
static_assert(::tools::is_integral_v<T> && !::std::is_same_v<::std::remove_cv_t<T>, bool>);
if constexpr (::tools::is_signed_v<T>) {
assert(x >= 0);
return ::tools::bit_width<::tools::make_unsigned_t<T>>(x);
} else {
return ::std::bit_width(x);
}
}
}
#line 6 "tools/ceil_log2.hpp"
namespace tools {
template <typename T>
constexpr T ceil_log2(T x) noexcept {
assert(x > 0);
return ::tools::bit_width(x - 1);
}
}
#line 1 "tools/fix.hpp"
#line 6 "tools/fix.hpp"
namespace tools {
template <typename F>
struct fix : F {
template <typename G>
fix(G&& g) : F({::std::forward<G>(g)}) {
}
template <typename... Args>
decltype(auto) operator()(Args&&... args) const {
return F::operator()(*this, ::std::forward<Args>(args)...);
}
};
template <typename F>
fix(F&&) -> fix<::std::decay_t<F>>;
}
#line 1 "tools/nop_monoid.hpp"
#line 5 "tools/nop_monoid.hpp"
namespace tools {
struct nop_monoid {
using T = ::std::monostate;
static T op(T, T) {
return {};
}
static T e() {
return {};
}
};
}
#line 16 "tools/lazy_segtree.hpp"
namespace tools {
template <typename SM, typename FM, auto mapping>
class lazy_segtree {
using S = typename SM::T;
using F = typename FM::T;
static_assert(
::std::is_convertible_v<decltype(mapping), ::std::function<S(F, S)>>,
"mapping must work as S(F, S)");
template <typename T>
static constexpr bool has_data = !::std::is_same_v<T, ::tools::nop_monoid>;
template <typename T>
static constexpr bool has_lazy = !::std::is_same_v<T, ::tools::nop_monoid>;
int m_size;
int m_height;
::std::vector<S> m_data;
::std::vector<F> m_lazy;
int capacity() const {
return 1 << this->m_height;
}
template <typename SFINAE = FM> requires (has_lazy<SFINAE>)
void push(const int k) {
assert(0 < k && k < this->capacity());
this->all_apply(2 * k, this->m_lazy[k]);
this->all_apply(2 * k + 1, this->m_lazy[k]);
this->m_lazy[k] = FM::e();
}
template <typename SFINAE = FM> requires (has_lazy<SFINAE>)
void all_apply(const int k, const F& f) {
assert(0 < k && k < 2 * this->capacity());
if constexpr (has_data<SM>) {
this->m_data[k] = mapping(f, this->m_data[k]);
if (k < this->capacity()) this->m_lazy[k] = FM::op(f, this->m_lazy[k]);
} else {
this->m_lazy[k] = FM::op(f, this->m_lazy[k]);
}
}
template <typename SFINAE = SM> requires (has_data<SFINAE>)
void update(const int k) {
assert(0 < k && this->capacity());
this->m_data[k] = SM::op(this->m_data[2 * k], this->m_data[2 * k + 1]);
}
public:
lazy_segtree() = default;
template <typename SFINAE = SM> requires (has_data<SFINAE>)
explicit lazy_segtree(const int n) : lazy_segtree(::std::vector<S>(n, SM::e())) {
}
template <typename SFINAE = SM> requires (!has_data<SFINAE>)
explicit lazy_segtree(const int n) : m_size(n), m_height(::tools::ceil_log2(::std::max(1, n))) {
this->m_lazy.assign(2 * this->capacity(), FM::e());
}
template <::std::ranges::range R, typename SFINAE = SM> requires (has_data<SFINAE>)
explicit lazy_segtree(R&& r) : m_data(::std::ranges::begin(r), ::std::ranges::end(r)) {
this->m_size = this->m_data.size();
this->m_height = ::tools::ceil_log2(::std::max(1, this->m_size));
this->m_data.reserve(2 * this->capacity());
this->m_data.insert(this->m_data.begin(), this->capacity(), SM::e());
this->m_data.resize(2 * this->capacity(), SM::e());
for (auto k = this->capacity() - 1; k > 0; --k) this->update(k);
if constexpr (has_lazy<FM>) {
this->m_lazy.assign(this->capacity(), FM::e());
}
}
int size() const {
return this->m_size;
}
template <typename SFINAE = SM> requires (has_data<SFINAE>)
void set(const int p, const S& x) {
assert(0 <= p && p < this->m_size);
::tools::fix([&](auto&& dfs, const int h, const int k) -> void {
if (h > 0) {
if constexpr (has_lazy<FM>) {
this->push(k);
}
dfs(h - 1, (this->capacity() + p) >> (h - 1));
this->update(k);
} else {
this->m_data[this->capacity() + p] = x;
}
})(this->m_height, 1);
}
template <typename SFINAE = SM> requires (has_data<SFINAE>)
S get(const int p) {
return this->prod(p, p + 1);
}
template <typename SFINAE = SM> requires (!has_data<SFINAE>)
F get(const int p) {
assert(0 <= p && p < this->m_size);
return ::tools::fix([&](auto&& dfs, const int h, const int k) -> F {
if (h > 0) {
this->push(k);
return dfs(h - 1, (this->capacity() + p) >> (h - 1));
} else {
return this->m_lazy[this->capacity() + p];
}
})(this->m_height, 1);
}
template <typename SFINAE = SM> requires (has_data<SFINAE>)
S prod(const int l, const int r) {
assert(0 <= l && l <= r && r <= this->m_size);
if (l == r) return SM::e();
return ::tools::fix([&](auto&& dfs, const int k, const int kl, const int kr) -> S {
assert(kl < kr);
if (l <= kl && kr <= r) return this->m_data[k];
if constexpr (has_lazy<FM>) {
this->push(k);
}
const auto km = ::std::midpoint(kl, kr);
S res = SM::e();
if (l < km) res = SM::op(res, dfs(k << 1, kl, km));
if (km < r) res = SM::op(res, dfs((k << 1) + 1, km, kr));
return res;
})(1, 0, this->capacity());
}
template <typename SFINAE = SM> requires (has_data<SFINAE>)
S all_prod() const {
return this->m_data[1];
}
template <typename SFINAE = FM> requires (has_lazy<SFINAE>)
void apply(const int p, const F& f) {
this->apply(p, p + 1, f);
}
template <typename SFINAE = FM> requires (has_lazy<SFINAE>)
void apply(const int l, const int r, const F& f) {
assert(0 <= l && l <= r && r <= this->m_size);
if (l == r) return;
::tools::fix([&](auto&& dfs, const int k, const int kl, const int kr) -> void {
assert(kl < kr);
if (l <= kl && kr <= r) {
this->all_apply(k, f);
return;
}
this->push(k);
const auto km = ::std::midpoint(kl, kr);
if (l < km) dfs(k << 1, kl, km);
if (km < r) dfs((k << 1) + 1, km, kr);
if constexpr (has_data<SM>) {
this->update(k);
}
})(1, 0, this->capacity());
}
template <typename G, typename SFINAE = SM> requires (has_data<SFINAE>)
int max_right(const int l, const G& g) {
assert(0 <= l && l <= this->m_size);
assert(g(SM::e()));
if (l == this->m_size) return l;
return ::std::min(::tools::fix([&](auto&& dfs, const S& c, const int k, const int kl, const int kr) -> ::std::pair<S, int> {
assert(kl < kr);
if (kl < l) {
assert(kl < l && l < kr);
if constexpr (has_lazy<FM>) {
this->push(k);
}
const auto km = ::std::midpoint(kl, kr);
if (l < km) {
const auto [hc, hr] = dfs(c, k << 1, kl, km);
assert(l <= hr && hr <= km);
if (hr < km) return {hc, hr};
return dfs(hc, (k << 1) + 1, km, kr);
} else {
return dfs(c, (k << 1) + 1, km, kr);
}
} else {
if (const auto wc = SM::op(c, this->m_data[k]); g(wc)) return {wc, kr};
if (kr - kl == 1) return {c, kl};
if constexpr (has_lazy<FM>) {
this->push(k);
}
const auto km = ::std::midpoint(kl, kr);
const auto [hc, hr] = dfs(c, k << 1, kl, km);
assert(l <= hr && hr <= km);
if (hr < km) return {hc, hr};
return dfs(hc, (k << 1) + 1, km, kr);
}
})(SM::e(), 1, 0, this->capacity()).second, this->m_size);
}
template <typename G, typename SFINAE = SM> requires (has_data<SFINAE>)
int min_left(const int r, const G& g) {
assert(0 <= r && r <= this->m_size);
assert(g(SM::e()));
if (r == 0) return r;
return ::tools::fix([&](auto&& dfs, const S& c, const int k, const int kl, const int kr) -> ::std::pair<S, int> {
assert(kl < kr);
if (r < kr) {
assert(kl < r && r < kr);
if constexpr (has_lazy<FM>) {
this->push(k);
}
const auto km = ::std::midpoint(kl, kr);
if (km < r) {
const auto [hc, hl] = dfs(c, (k << 1) + 1, km, kr);
assert(km <= hl && hl <= r);
if (km < hl) return {hc, hl};
return dfs(hc, k << 1, kl, km);
} else {
return dfs(c, k << 1, kl, km);
}
} else {
if (const auto wc = SM::op(this->m_data[k], c); g(wc)) return {wc, kl};
if (kr - kl == 1) return {c, kr};
if constexpr (has_lazy<FM>) {
this->push(k);
}
const auto km = ::std::midpoint(kl, kr);
const auto [hc, hl] = dfs(c, (k << 1) + 1, km, kr);
assert(km <= hl && hl <= r);
if (km < hl) return {hc, hl};
return dfs(hc, k << 1, kl, km);
}
})(SM::e(), 1, 0, this->capacity()).second;
}
};
}
#line 1 "tools/nop_mapping.hpp"
namespace tools {
template <typename F, typename S>
S nop_mapping(F, const S& e) {
return e;
}
}
#line 11 "tests/lazy_segtree/segtree.test.cpp"
template <typename SM>
using segtree = tools::lazy_segtree<SM, tools::nop_monoid, tools::nop_mapping<std::monostate, typename SM::T>>;
using mint = atcoder::modint998244353;
struct SM {
using T = std::pair<mint, mint>;
static T op(const T& f, const T& g) {
return {g.first * f.first, g.first * f.second + g.second};
}
static T e() {
return {mint::raw(1), mint::raw(0)};
}
};
using S = typename SM::T;
int main() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
int N, Q;
std::cin >> N >> Q;
segtree<SM> f([&]() {
std::vector<std::pair<mint, mint>> v(N);
for (auto& [a, b] : v) {
int x, y;
std::cin >> x >> y;
a = mint::raw(x);
b = mint::raw(y);
}
return v;
}());
for (int q = 0; q < Q; ++q) {
int t;
std::cin >> t;
if (t == 0) {
int p, c, d;
std::cin >> p >> c >> d;
f.set(p, {mint::raw(c), mint::raw(d)});
} else {
int l, r, x;
std::cin >> l >> r >> x;
const auto [a, b] = f.prod(l, r);
std::cout << (a * mint::raw(x) + b).val() << '\n';
}
}
return 0;
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++ | example_00 |
![]() |
5 ms | 3 MB |
g++ | max_random_00 |
![]() |
345 ms | 17 MB |
g++ | max_random_01 |
![]() |
360 ms | 17 MB |
g++ | max_random_02 |
![]() |
353 ms | 17 MB |
g++ | max_random_03 |
![]() |
343 ms | 17 MB |
g++ | max_random_04 |
![]() |
347 ms | 17 MB |
g++ | random_00 |
![]() |
291 ms | 14 MB |
g++ | random_01 |
![]() |
291 ms | 16 MB |
g++ | random_02 |
![]() |
194 ms | 5 MB |
g++ | random_03 |
![]() |
72 ms | 15 MB |
g++ | random_04 |
![]() |
93 ms | 14 MB |
g++ | small_00 |
![]() |
5 ms | 4 MB |
g++ | small_01 |
![]() |
5 ms | 4 MB |
g++ | small_02 |
![]() |
5 ms | 4 MB |
g++ | small_03 |
![]() |
5 ms | 4 MB |
g++ | small_04 |
![]() |
5 ms | 4 MB |