proconlib

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub anqooqie/proconlib

:heavy_check_mark: tests/hld/vsubtree.test.cpp

Depends on

Code

// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/vertex_add_subtree_sum

#include <iostream>
#include <vector>
#include "atcoder/fenwicktree.hpp"
#include "tools/hld.hpp"

using ll = long long;

int main() {
  std::cin.tie(nullptr);
  std::ios_base::sync_with_stdio(false);

  ll N, Q;
  std::cin >> N >> Q;
  std::vector<ll> a(N);
  for (auto& a_i : a) std::cin >> a_i;

  tools::hld hld(N);
  for (ll v = 1; v < N; ++v) {
    ll p;
    std::cin >> p;
    hld.add_edge(p, v);
  }

  hld.build(0);
  atcoder::fenwick_tree<ll> fw(N);
  for (ll v = 0; v < N; ++v) {
    fw.add(hld.vid2dfs(v), a[v]);
  }

  for (ll q = 0; q < Q; ++q) {
    ll t;
    std::cin >> t;
    if (t == 0) {
      ll u, x;
      std::cin >> u >> x;
      fw.add(hld.vid2dfs(u), x);
    } else {
      ll u;
      std::cin >> u;
      const auto& [l, r] = hld.vsubtree(u);
      std::cout << fw.sum(l, r) << '\n';
    }
  }

  return 0;
}
#line 1 "tests/hld/vsubtree.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/vertex_add_subtree_sum

#include <iostream>
#include <vector>
#line 1 "lib/ac-library/atcoder/fenwicktree.hpp"



#include <cassert>
#line 6 "lib/ac-library/atcoder/fenwicktree.hpp"

#line 1 "lib/ac-library/atcoder/internal_type_traits.hpp"



#line 5 "lib/ac-library/atcoder/internal_type_traits.hpp"
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


#line 8 "lib/ac-library/atcoder/fenwicktree.hpp"

namespace atcoder {

// Reference: https://en.wikipedia.org/wiki/Fenwick_tree
template <class T> struct fenwick_tree {
    using U = internal::to_unsigned_t<T>;

  public:
    fenwick_tree() : _n(0) {}
    explicit fenwick_tree(int n) : _n(n), data(n) {}

    void add(int p, T x) {
        assert(0 <= p && p < _n);
        p++;
        while (p <= _n) {
            data[p - 1] += U(x);
            p += p & -p;
        }
    }

    T sum(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        return sum(r) - sum(l);
    }

  private:
    int _n;
    std::vector<U> data;

    U sum(int r) {
        U s = 0;
        while (r > 0) {
            s += data[r - 1];
            r -= r & -r;
        }
        return s;
    }
};

}  // namespace atcoder


#line 1 "tools/hld.hpp"



#include <algorithm>
#line 6 "tools/hld.hpp"
#include <iterator>
#include <limits>
#line 9 "tools/hld.hpp"
#include <ranges>
#include <stack>
#include <utility>
#line 1 "lib/ac-library/atcoder/dsu.hpp"



#line 7 "lib/ac-library/atcoder/dsu.hpp"

namespace atcoder {

// Implement (union by size) + (path compression)
// Reference:
// Zvi Galil and Giuseppe F. Italiano,
// Data structures and algorithms for disjoint set union problems
struct dsu {
  public:
    dsu() : _n(0) {}
    explicit dsu(int n) : _n(n), parent_or_size(n, -1) {}

    int merge(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool same(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
            std::remove_if(result.begin(), result.end(),
                           [&](const std::vector<int>& v) { return v.empty(); }),
            result.end());
        return result;
    }

  private:
    int _n;
    // root node: -1 * component size
    // otherwise: parent
    std::vector<int> parent_or_size;
};

}  // namespace atcoder


#line 1 "tools/less_by.hpp"



namespace tools {

  template <class F>
  class less_by {
  private:
    F selector;

  public:
    less_by(const F& selector) : selector(selector) {
    }

    template <class T>
    bool operator()(const T& x, const T& y) const {
      return selector(x) < selector(y);
    }
  };
}


#line 1 "tools/pow2.hpp"



#line 5 "tools/pow2.hpp"
#include <cstddef>

namespace tools {

  template <typename T, typename ::std::enable_if<::std::is_unsigned<T>::value, ::std::nullptr_t>::type = nullptr>
  constexpr T pow2(const T x) {
    return static_cast<T>(1) << x;
  }

  template <typename T, typename ::std::enable_if<::std::is_signed<T>::value, ::std::nullptr_t>::type = nullptr>
  constexpr T pow2(const T x) {
    return static_cast<T>(static_cast<typename ::std::make_unsigned<T>::type>(1) << static_cast<typename ::std::make_unsigned<T>::type>(x));
  }
}


#line 16 "tools/hld.hpp"

namespace tools {
  class hld {
    bool m_built;
    ::std::vector<::std::vector<int>> m_graph;
    ::std::vector<int> m_edges;
    ::std::vector<int> m_parent;
    ::std::vector<int> m_depth;
    ::atcoder::dsu m_dsu;
    ::std::vector<int> m_out;
    ::std::vector<int> m_vid2dfs;
    ::std::vector<int> m_dfs2vid;
    ::std::vector<int> m_eid2dfs;
    ::std::vector<int> m_dfs2eid;
    ::std::vector<::std::vector<int>> m_ancestors;

  public:
    class vchildren_view : public ::std::ranges::view_interface<vchildren_view> {
      ::tools::hld const *m_parent;
      int m_v;

    public:
      class iterator {
      private:
        ::tools::hld const *m_parent;
        int m_v;
        int m_i;

      public:
        using difference_type = ::std::ptrdiff_t;
        using value_type = int;
        using reference = int;
        using pointer = int*;
        using iterator_category = ::std::input_iterator_tag;

        iterator() = default;
        iterator(::tools::hld const * const parent, const int v, const int i) :
          m_parent(parent),
          m_v(v),
          m_i(i) {
        }

        reference operator*() const {
          return this->m_parent->m_edges[this->m_parent->m_graph[this->m_v][this->m_i]] ^ this->m_v;
        }
        iterator& operator++() {
          ++this->m_i;
          return *this;
        }
        iterator operator++(int) {
          const auto self = *this;
          ++*this;
          return self;
        }
        friend bool operator==(const iterator& lhs, const iterator& rhs) {
          return lhs.m_parent == rhs.m_parent && lhs.m_v == rhs.m_v && lhs.m_i == rhs.m_i;
        }
        friend bool operator!=(const iterator& lhs, const iterator& rhs) {
          return !(lhs == rhs);
        }
      };

      vchildren_view() = default;
      vchildren_view(::tools::hld const * const parent, const int v) :
        m_parent(parent),
        m_v(v) {
      }

      iterator begin() const {
        return iterator(this->m_parent, this->m_v, 0);
      };
      iterator end() const {
        return iterator(this->m_parent, this->m_v, this->m_parent->m_graph[this->m_v].size());
      }
    };

    hld() = default;
    explicit hld(const int n) : m_built(false), m_graph(n) {
      assert(n >= 1);
    }

    int size() const {
      return this->m_graph.size();
    }

    void add_edge(const int u, const int v) {
      assert(!this->m_built);
      assert(0 <= u && u < this->size());
      assert(0 <= v && v < this->size());
      this->m_graph[u].push_back(this->m_edges.size());
      this->m_graph[v].push_back(this->m_edges.size());
      this->m_edges.push_back(u ^ v);
    }

    void build(const int root) {
      assert(!this->m_built);
      assert(0 <= root && root < this->size());
      assert(::std::ssize(this->m_edges) + 1 == this->size());

      this->m_parent.resize(this->size());
      this->m_depth.resize(this->size());
      this->m_dsu = ::atcoder::dsu(this->size());
      this->m_out.resize(this->size());
      this->m_vid2dfs.resize(this->size());
      this->m_dfs2vid.resize(this->size());
      this->m_eid2dfs.resize(this->m_edges.size());
      this->m_dfs2eid.resize(this->m_edges.size());

      ::std::vector<int> subtree_size(this->size());
      this->m_parent[root] = ::std::numeric_limits<int>::max();
      this->m_depth[root] = 0;
      ::std::stack<::std::pair<int, bool>> stack;
      stack.emplace(root, false);
      stack.emplace(root, true);
      while (!stack.empty()) {
        const auto [here, pre] = stack.top();
        stack.pop();
        if (pre) {
          for (const auto eid : this->m_graph[here]) {
            const auto next = this->m_edges[eid] ^ here;
            if (here == root || next != (this->m_edges[this->m_parent[here]] ^ here)) {
              this->m_parent[next] = eid;
              this->m_depth[next] = this->m_depth[here] + 1;
              stack.emplace(next, false);
              stack.emplace(next, true);
            }
          }
        } else {
          subtree_size[here] = 1;
          for (const auto eid : this->m_graph[here]) {
            const auto child = this->m_edges[eid] ^ here;
            if (here == root || child != (this->m_edges[this->m_parent[here]] ^ here)) {
              subtree_size[here] += subtree_size[child];
            }
          }
        }
      }

      for (int v = 0; v < this->size(); ++v) {
        if (v != root) {
          this->m_graph[v].erase(::std::ranges::find(this->m_graph[v], this->m_parent[v]));
        }
        if (this->m_graph[v].size() > 1) {
          ::std::iter_swap(
            this->m_graph[v].begin(),
            ::std::ranges::max_element(
              this->m_graph[v],
              ::tools::less_by([&](const int eid) { return subtree_size[this->m_edges[eid] ^ v]; })
            )
          );
        }
      }

      int dfs_order = 0;
      stack.emplace(root, false);
      stack.emplace(root, true);
      while (!stack.empty()) {
        const auto [here, pre] = stack.top();
        stack.pop();

        if (pre) {
          this->m_vid2dfs[here] = dfs_order;
          this->m_dfs2vid[dfs_order] = here;
          if (here != root) {
            this->m_eid2dfs[this->m_parent[here]] = dfs_order - 1;
            this->m_dfs2eid[dfs_order - 1] = this->m_parent[here];
          }
          ++dfs_order;

          if (!this->m_graph[here].empty()) {
            this->m_dsu.merge(here, this->m_edges[this->m_graph[here].front()] ^ here);
          }
          for (auto it = this->m_graph[here].rbegin(); it != this->m_graph[here].rend(); ++it) {
            stack.emplace(this->m_edges[*it] ^ here, false);
            stack.emplace(this->m_edges[*it] ^ here, true);
          }
        } else {
          this->m_out[here] = dfs_order;
        }
      }

      this->m_built = true;
    }

    int depth(const int v) const {
      assert(this->m_built);
      assert(0 <= v && v < this->size());
      return this->m_depth[v];
    }
    int vparent(const int v) const {
      assert(this->m_built);
      assert(0 <= v && v < this->size());
      assert(this->m_depth[v] > 0);
      return this->m_edges[this->m_parent[v]] ^ v;
    }
    int eparent(const int v) const {
      assert(this->m_built);
      assert(0 <= v && v < this->size());
      assert(this->m_depth[v] > 0);
      return this->m_parent[v];
    }
    int vancestor(const int v, const int k) {
      assert(this->m_built);
      assert(0 <= v && v < this->size());
      assert(0 <= k && k <= this->m_depth[v]);

      if (this->m_ancestors.empty()) {
        this->m_ancestors.resize(this->size());
        ::std::vector<int> targets(this->size());
        ::std::iota(targets.begin(), targets.end(), 0);
        targets.erase(::std::remove(targets.begin(), targets.end(), this->m_dfs2vid[0]), targets.end());
        for (const auto t : targets) {
          this->m_ancestors[t].push_back(this->vparent(t));
        }
        for (int g = 1; [&]() {
          targets.erase(::std::remove_if(targets.begin(), targets.end(), [&](const int t) {
            return this->m_depth[t] < ::tools::pow2(g);
          }), targets.end());
          return !targets.empty();
        }(); ++g) {
          for (const auto t : targets) {
            this->m_ancestors[t].push_back(this->m_ancestors[this->m_ancestors[t][g - 1]][g - 1]);
          }
        }
      }

      int res = v;
      for (int g = 0; ::tools::pow2(g) <= k; ++g) {
        if ((k >> g) & 1) {
          res = this->m_ancestors[res][g];
        }
      }

      return res;
    }
    ::tools::hld::vchildren_view vchildren(const int v) const & {
      assert(this->m_built);
      assert(0 <= v && v < this->size());
      return ::tools::hld::vchildren_view(this, v);
    }
    const ::std::vector<int>& echildren(const int v) const & {
      assert(this->m_built);
      assert(0 <= v && v < this->size());
      return this->m_graph[v];
    }

    int vid2dfs(const int v) const {
      assert(this->m_built);
      assert(0 <= v && v < this->size());
      return this->m_vid2dfs[v];
    }
    int dfs2vid(const int i) const {
      assert(this->m_built);
      assert(0 <= i && i < this->size());
      return this->m_dfs2vid[i];
    }
    int eid2dfs(const int e) const {
      assert(this->m_built);
      assert(0 <= e && e < this->size());
      return this->m_eid2dfs[e];
    }
    int dfs2eid(const int i) const {
      assert(this->m_built);
      assert(0 <= i && i < this->size());
      return this->m_dfs2eid[i];
    }

    int lca(int u, int v) {
      assert(this->m_built);
      assert(0 <= u && u < this->size());
      assert(0 <= v && v < this->size());

      while (!this->m_dsu.same(u, v)) {
        if (this->m_depth[this->m_dsu.leader(u)] >= this->m_depth[this->m_dsu.leader(v)]) {
          u = this->m_edges[this->m_parent[this->m_dsu.leader(u)]] ^ this->m_dsu.leader(u);
        } else {
          v = this->m_edges[this->m_parent[this->m_dsu.leader(v)]] ^ this->m_dsu.leader(v);
        }
      }
      if (this->m_depth[u] >= this->m_depth[v]) {
        return v;
      } else {
        return u;
      }
    }

    ::std::pair<int, int> vsubtree(const int v) const {
      assert(this->m_built);
      assert(0 <= v && v < this->size());
      return ::std::make_pair(this->m_vid2dfs[v], this->m_out[v]);
    }
    ::std::pair<int, int> esubtree(const int v) const {
      assert(this->m_built);
      assert(0 <= v && v < this->size());
      return ::std::make_pair(this->m_depth[v] == 0 ? 0 : this->m_eid2dfs[this->m_parent[v]] + 1, this->m_out[v] - 1);
    }

    ::std::vector<::std::pair<int, int>> vpath(int u, int v) {
      assert(this->m_built);
      assert(0 <= u && u < this->size());
      assert(0 <= v && v < this->size());

      ::std::vector<::std::pair<int, int>> head, tail;
      while (!this->m_dsu.same(u, v)) {
        if (this->m_depth[this->m_dsu.leader(u)] >= this->m_depth[this->m_dsu.leader(v)]) {
          head.emplace_back(this->m_vid2dfs[u] + 1, this->m_vid2dfs[this->m_dsu.leader(u)]);
          u = this->m_edges[this->m_parent[this->m_dsu.leader(u)]] ^ this->m_dsu.leader(u);
        } else {
          tail.emplace_back(this->m_vid2dfs[this->m_dsu.leader(v)], this->m_vid2dfs[v] + 1);
          v = this->m_edges[this->m_parent[this->m_dsu.leader(v)]] ^ this->m_dsu.leader(v);
        }
      }
      if (this->m_depth[u] >= this->m_depth[v]) {
        head.emplace_back(this->m_vid2dfs[u] + 1, this->m_vid2dfs[v]);
      } else {
        head.emplace_back(this->m_vid2dfs[u], this->m_vid2dfs[v] + 1);
      }

      ::std::copy(tail.rbegin(), tail.rend(), ::std::back_inserter(head));
      return head;
    }
    ::std::vector<::std::pair<int, int>> epath(int u, int v) {
      assert(this->m_built);
      assert(0 <= u && u < this->size());
      assert(0 <= v && v < this->size());

      ::std::vector<::std::pair<int, int>> head, tail;
      while (!this->m_dsu.same(u, v)) {
        if (this->m_depth[this->m_dsu.leader(u)] >= this->m_depth[this->m_dsu.leader(v)]) {
          head.emplace_back(this->m_eid2dfs[this->m_parent[u]] + 1, this->m_eid2dfs[this->m_parent[this->m_dsu.leader(u)]]);
          u = this->m_edges[this->m_parent[this->m_dsu.leader(u)]] ^ this->m_dsu.leader(u);
        } else {
          tail.emplace_back(this->m_eid2dfs[this->m_parent[this->m_dsu.leader(v)]], this->m_eid2dfs[this->m_parent[v]] + 1);
          v = this->m_edges[this->m_parent[this->m_dsu.leader(v)]] ^ this->m_dsu.leader(v);
        }
      }
      if (this->m_depth[u] > this->m_depth[v]) {
        head.emplace_back(this->m_eid2dfs[this->m_parent[u]] + 1, this->m_eid2dfs[this->m_graph[v].front()]);
      } else if (this->m_depth[u] < this->m_depth[v]) {
        head.emplace_back(this->m_eid2dfs[this->m_graph[u].front()], this->m_eid2dfs[this->m_parent[v]] + 1);
      }

      ::std::copy(tail.rbegin(), tail.rend(), ::std::back_inserter(head));
      return head;
    }
  };
}


#line 7 "tests/hld/vsubtree.test.cpp"

using ll = long long;

int main() {
  std::cin.tie(nullptr);
  std::ios_base::sync_with_stdio(false);

  ll N, Q;
  std::cin >> N >> Q;
  std::vector<ll> a(N);
  for (auto& a_i : a) std::cin >> a_i;

  tools::hld hld(N);
  for (ll v = 1; v < N; ++v) {
    ll p;
    std::cin >> p;
    hld.add_edge(p, v);
  }

  hld.build(0);
  atcoder::fenwick_tree<ll> fw(N);
  for (ll v = 0; v < N; ++v) {
    fw.add(hld.vid2dfs(v), a[v]);
  }

  for (ll q = 0; q < Q; ++q) {
    ll t;
    std::cin >> t;
    if (t == 0) {
      ll u, x;
      std::cin >> u >> x;
      fw.add(hld.vid2dfs(u), x);
    } else {
      ll u;
      std::cin >> u;
      const auto& [l, r] = hld.vsubtree(u);
      std::cout << fw.sum(l, r) << '\n';
    }
  }

  return 0;
}

Test cases

Env Name Status Elapsed Memory
g++ example_00 :heavy_check_mark: AC 5 ms 4 MB
g++ line_00 :heavy_check_mark: AC 231 ms 60 MB
g++ line_01 :heavy_check_mark: AC 233 ms 60 MB
g++ max_random_00 :heavy_check_mark: AC 472 ms 57 MB
g++ max_random_01 :heavy_check_mark: AC 453 ms 57 MB
g++ max_random_02 :heavy_check_mark: AC 448 ms 57 MB
g++ random_00 :heavy_check_mark: AC 318 ms 45 MB
g++ random_01 :heavy_check_mark: AC 402 ms 53 MB
g++ random_02 :heavy_check_mark: AC 95 ms 9 MB
g++ random_03 :heavy_check_mark: AC 278 ms 49 MB
g++ random_04 :heavy_check_mark: AC 173 ms 33 MB
g++ small_00 :heavy_check_mark: AC 5 ms 4 MB
g++ small_01 :heavy_check_mark: AC 4 ms 4 MB
g++ small_02 :heavy_check_mark: AC 4 ms 4 MB
g++ small_03 :heavy_check_mark: AC 5 ms 4 MB
g++ small_04 :heavy_check_mark: AC 4 ms 4 MB
Back to top page