proconlib

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub anqooqie/proconlib

:heavy_check_mark: tests/divisor_zeta.test.cpp

Depends on

Code

// competitive-verifier: STANDALONE

#include <iostream>
#include <random>
#include <vector>
#include <iterator>
#include "atcoder/modint.hpp"
#include "tools/assert_that.hpp"
#include "tools/divisor_zeta.hpp"

using mint = atcoder::modint998244353;

int main() {
  std::cin.tie(nullptr);
  std::ios_base::sync_with_stdio(false);

  std::random_device seed_gen;
  std::mt19937 engine(seed_gen());
  std::uniform_int_distribution<int> dist(0, 998244352);

  for (int N = 0; N <= 20; ++N) {
    std::vector<mint> a(N);
    for (auto&& a_i : a) a_i = mint::raw(dist(engine));

    std::vector<mint> b(N, mint::raw(0));
    if (N > 0) b[0] = a[0];
    for (int i = 1; i < N; ++i) {
      for (int j = 1; j < N; ++j) {
        if (i % j == 0) b[i] += a[j];
      }
    }

    std::vector<mint> actual_b;
    tools::divisor_zeta(a.begin(), a.end(), std::back_inserter(actual_b));
    assert_that(actual_b == b);

    tools::divisor_zeta(a.begin(), a.end());
    assert_that(a == b);
  }

  return 0;
}
#line 1 "tests/divisor_zeta.test.cpp"
// competitive-verifier: STANDALONE

#include <iostream>
#include <random>
#include <vector>
#include <iterator>
#line 1 "lib/ac-library/atcoder/modint.hpp"



#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

#line 1 "lib/ac-library/atcoder/internal_math.hpp"



#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned long long y = x * _m;
        return (unsigned int)(z - y + (z < y ? _m : 0));
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#line 1 "lib/ac-library/atcoder/internal_type_traits.hpp"



#line 7 "lib/ac-library/atcoder/internal_type_traits.hpp"

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


#line 14 "lib/ac-library/atcoder/modint.hpp"

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


#line 1 "tools/assert_that.hpp"



#line 5 "tools/assert_that.hpp"
#include <cstdlib>

#define assert_that_impl(cond, file, line, func) do {\
  if (!cond) {\
    ::std::cerr << file << ':' << line << ": " << func << ": Assertion `" << #cond << "' failed." << '\n';\
    ::std::exit(EXIT_FAILURE);\
  }\
} while (false)
#define assert_that(...) assert_that_impl((__VA_ARGS__), __FILE__, __LINE__, __func__)


#line 1 "tools/divisor_zeta.hpp"



#line 6 "tools/divisor_zeta.hpp"
#include <algorithm>
#line 1 "tools/eratosthenes_sieve.hpp"



#include <array>
#include <cstdint>
#line 7 "tools/eratosthenes_sieve.hpp"
#include <cstddef>
#line 11 "tools/eratosthenes_sieve.hpp"

namespace tools {
  template <typename T>
  class eratosthenes_sieve {
    constexpr static ::std::array<::std::uint64_t, 15> init = {
      UINT64_C(0b0010100000100010100010100010000010100000100010100010100010000010),
      UINT64_C(0b1000001010000010001010001010001000001010000010001010001010001000),
      UINT64_C(0b1000100000101000001000101000101000100000101000001000101000101000),
      UINT64_C(0b0010100010000010100000100010100010100010000010100000100010100010),
      UINT64_C(0b1010001010001000001010000010001010001010001000001010000010001010),
      UINT64_C(0b1000101000101000100000101000001000101000101000100000101000001000),
      UINT64_C(0b0000100010100010100010000010100000100010100010100010000010100000),
      UINT64_C(0b1010000010001010001010001000001010000010001010001010001000001010),
      UINT64_C(0b0000101000001000101000101000100000101000001000101000101000100000),
      UINT64_C(0b0010000010100000100010100010100010000010100000100010100010100010),
      UINT64_C(0b1010001000001010000010001010001010001000001010000010001010001010),
      UINT64_C(0b1000101000100000101000001000101000101000100000101000001000101000),
      UINT64_C(0b0010100010100010000010100000100010100010100010000010100000100010),
      UINT64_C(0b0010001010001010001000001010000010001010001010001000001010000010),
      UINT64_C(0b1000001000101000101000100000101000001000101000101000100000101000),
    };
    ::std::vector<::std::uint64_t> m_is_prime;
    int m_n;

  public:
    class prime_iterable {
    private:
      ::tools::eratosthenes_sieve<T> const *m_parent;
      int m_l;
      int m_r;

    public:
      class iterator {
      private:
        ::tools::eratosthenes_sieve<T> const *m_parent;
        int m_p;

      public:
        using difference_type = ::std::ptrdiff_t;
        using value_type = T;
        using reference = const T&;
        using pointer = const T*;
        using iterator_category = ::std::input_iterator_tag;

        iterator() = default;
        iterator(::tools::eratosthenes_sieve<T> const * const parent, const int p) : m_parent(parent), m_p(p) {
          for (; this->m_p <= parent->m_n && !parent->is_prime(this->m_p); ++this->m_p);
        }

        value_type operator*() const {
          return this->m_p;
        }
        iterator& operator++() {
          for (++this->m_p; this->m_p <= this->m_parent->m_n && !this->m_parent->is_prime(this->m_p); ++this->m_p);
          return *this;
        }
        iterator operator++(int) {
          const auto self = *this;
          ++*this;
          return self;
        }
        friend bool operator==(const iterator lhs, const iterator rhs) {
          assert(lhs.m_parent == rhs.m_parent);
          return lhs.m_p == rhs.m_p;
        }
        friend bool operator!=(const iterator lhs, const iterator rhs) {
          return !(lhs == rhs);
        }
      };

      prime_iterable() = default;
      prime_iterable(::tools::eratosthenes_sieve<T> const * const parent, const int l, const int r) : m_parent(parent), m_l(l), m_r(r) {
      }

      iterator begin() const {
        return iterator(this->m_parent, this->m_l);
      };
      iterator end() const {
        return iterator(this->m_parent, this->m_r + 1);
      }
    };

    eratosthenes_sieve() = default;
    explicit eratosthenes_sieve(const int n) : m_n(n) {
      assert(n >= 1);
      this->m_is_prime.reserve((n >> 6) + 1);
      for (int i = 0; i <= n; i += 960) {
        ::std::copy(init.begin(), n < i + 959 ? ::std::next(init.begin(), (n >> 6) % 15 + 1) : init.end(), ::std::back_inserter(this->m_is_prime));
      }
      this->m_is_prime[0] ^= UINT64_C(0b101110);

      int i = 7;
      while (true) {
        if (n < i * i) break;
        if (this->is_prime(i)) { // 7
          int j = i * i;
          while (true) {
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 7 * 7
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 7 * 11
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 7 * 13
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 7 * 17
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 7 * 19
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 7 * 23
            j += i * 6;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 7 * 29
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 7 * 1
            j += i * 6;
            if (n < j) break;
          }
        }
        i += 4;
        if (n < i * i) break;
        if (this->is_prime(i)) { // 11
          int j = i * i;
          while (true) {
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 11 * 11
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 11 * 13
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 11 * 17
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 11 * 19
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 11 * 23
            j += i * 6;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 11 * 29
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 11 * 1
            j += i * 6;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 11 * 7
            j += i * 4;
            if (n < j) break;
          }
        }
        i += 2;
        if (n < i * i) break;
        if (this->is_prime(i)) { // 13
          int j = i * i;
          while (true) {
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 13 * 13
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 13 * 17
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 13 * 19
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 13 * 23
            j += i * 6;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 13 * 29
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 13 * 1
            j += i * 6;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 13 * 7
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 13 * 11
            j += i + i;
            if (n < j) break;
          }
        }
        i += 4;
        if (n < i * i) break;
        if (this->is_prime(i)) { // 17
          int j = i * i;
          while (true) {
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 17 * 17
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 17 * 19
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 17 * 23
            j += i * 6;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 17 * 29
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 17 * 1
            j += i * 6;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 17 * 7
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 17 * 11
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 17 * 13
            j += i * 4;
            if (n < j) break;
          }
        }
        i += 2;
        if (n < i * i) break;
        if (this->is_prime(i)) { // 19
          int j = i * i;
          while (true) {
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 19 * 19
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 19 * 23
            j += i * 6;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 19 * 29
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 19 * 1
            j += i * 6;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 19 * 7
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 19 * 11
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 19 * 13
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 19 * 17
            j += i + i;
            if (n < j) break;
          }
        }
        i += 4;
        if (n < i * i) break;
        if (this->is_prime(i)) { // 23
          int j = i * i;
          while (true) {
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 23 * 23
            j += i * 6;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 23 * 29
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 23 * 1
            j += i * 6;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 23 * 7
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 23 * 11
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 23 * 13
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 23 * 17
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 23 * 19
            j += i * 4;
            if (n < j) break;
          }
        }
        i += 6;
        if (n < i * i) break;
        if (this->is_prime(i)) { // 29
          int j = i * i;
          while (true) {
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 29 * 29
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 29 * 1
            j += i * 6;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 29 * 7
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 29 * 11
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 29 * 13
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 29 * 17
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 29 * 19
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 29 * 23
            j += i * 6;
            if (n < j) break;
          }
        }
        i += 2;
        if (n < i * i) break;
        if (this->is_prime(i)) { // 1
          int j = i * i;
          while (true) {
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 1 * 1
            j += i * 6;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 1 * 7
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 1 * 11
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 1 * 13
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 1 * 17
            j += i + i;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 1 * 19
            j += i * 4;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 1 * 23
            j += i * 6;
            if (n < j) break;
            this->m_is_prime[j >> 6] &= ~(UINT64_C(1) << (j & 0b111111)); // 1 * 29
            j += i + i;
            if (n < j) break;
          }
        }
        i += 6;
      }
    }

    inline bool is_prime(const int i) const {
      assert(1 <= i && i <= this->m_n);
      return (this->m_is_prime[i >> 6] >> (i & 0b111111)) & 1;
    }

    prime_iterable prime_range(const int l, const int r) const {
      assert(1 <= l && l <= r && r <= this->m_n);
      return prime_iterable(this, l, r);
    }
  };
}


#line 8 "tools/divisor_zeta.hpp"

namespace tools {
  template <typename RandomAccessIterator>
  void divisor_zeta(const RandomAccessIterator begin, const RandomAccessIterator end) {
    const int N = end - begin;
    if (N < 2) return;

    ::tools::eratosthenes_sieve<int> sieve(N - 1);
    for (const auto p : sieve.prime_range(1, N - 1)) {
      for (int i = 1; i * p < N; ++i) {
        begin[i * p] += begin[i];
      }
    }
  }

  template <typename InputIterator, typename OutputIterator>
  void divisor_zeta(const InputIterator begin, const InputIterator end, const OutputIterator result) {
    using T = typename ::std::iterator_traits<InputIterator>::value_type;
    ::std::vector<T> a(begin, end);
    ::tools::divisor_zeta(a.begin(), a.end());
    ::std::move(a.begin(), a.end(), result);
  }
}


#line 10 "tests/divisor_zeta.test.cpp"

using mint = atcoder::modint998244353;

int main() {
  std::cin.tie(nullptr);
  std::ios_base::sync_with_stdio(false);

  std::random_device seed_gen;
  std::mt19937 engine(seed_gen());
  std::uniform_int_distribution<int> dist(0, 998244352);

  for (int N = 0; N <= 20; ++N) {
    std::vector<mint> a(N);
    for (auto&& a_i : a) a_i = mint::raw(dist(engine));

    std::vector<mint> b(N, mint::raw(0));
    if (N > 0) b[0] = a[0];
    for (int i = 1; i < N; ++i) {
      for (int j = 1; j < N; ++j) {
        if (i % j == 0) b[i] += a[j];
      }
    }

    std::vector<mint> actual_b;
    tools::divisor_zeta(a.begin(), a.end(), std::back_inserter(actual_b));
    assert_that(actual_b == b);

    tools::divisor_zeta(a.begin(), a.end());
    assert_that(a == b);
  }

  return 0;
}
Back to top page