proconlib

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub anqooqie/proconlib

:heavy_check_mark: tests/bigdecimal/hand.test.cpp

Depends on

Code

// competitive-verifier: STANDALONE

#include <iostream>
#include "tools/assert_that.hpp"
#include "tools/bigdecimal.hpp"

int main() {
  std::cin.tie(nullptr);
  std::ios_base::sync_with_stdio(false);

  assert_that(::tools::bigdecimal("0.003").divide_and_copy(::tools::bigdecimal("20"), 4, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("0.0002"));
  assert_that(::tools::bigdecimal("0.03").divide_and_copy(::tools::bigdecimal("20"), 3, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("0.002"));
  assert_that(::tools::bigdecimal("0.3").divide_and_copy(::tools::bigdecimal("20"), 2, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("0.02"));
  assert_that(::tools::bigdecimal("3").divide_and_copy(::tools::bigdecimal("20"), 1, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("0.2"));
  assert_that(::tools::bigdecimal("30").divide_and_copy(::tools::bigdecimal("20"), 0, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("2"));
  assert_that(::tools::bigdecimal("300").divide_and_copy(::tools::bigdecimal("20"), -1, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("20"));
  assert_that(::tools::bigdecimal("3000").divide_and_copy(::tools::bigdecimal("20"), -2, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("200"));
  assert_that(::tools::bigdecimal("0.001").divide_and_copy(::tools::bigdecimal("4"), 4, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("0.0002"));
  assert_that(::tools::bigdecimal("0.01").divide_and_copy(::tools::bigdecimal("4"), 3, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("0.002"));
  assert_that(::tools::bigdecimal("0.1").divide_and_copy(::tools::bigdecimal("4"), 2, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("0.02"));
  assert_that(::tools::bigdecimal("1").divide_and_copy(::tools::bigdecimal("4"), 1, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("0.2"));
  assert_that(::tools::bigdecimal("10").divide_and_copy(::tools::bigdecimal("4"), 0, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("2"));
  assert_that(::tools::bigdecimal("100").divide_and_copy(::tools::bigdecimal("4"), -1, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("20"));
  assert_that(::tools::bigdecimal("1000").divide_and_copy(::tools::bigdecimal("4"), -2, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("200"));

  return 0;
}
#line 1 "tests/bigdecimal/hand.test.cpp"
// competitive-verifier: STANDALONE

#include <iostream>
#line 1 "tools/assert_that.hpp"



#line 5 "tools/assert_that.hpp"
#include <cstdlib>

#define assert_that_impl(cond, file, line, func) do {\
  if (!cond) {\
    ::std::cerr << file << ':' << line << ": " << func << ": Assertion `" << #cond << "' failed." << '\n';\
    ::std::exit(EXIT_FAILURE);\
  }\
} while (false)
#define assert_that(...) assert_that_impl((__VA_ARGS__), __FILE__, __LINE__, __func__)


#line 1 "tools/bigdecimal.hpp"



#include <cstddef>
#include <algorithm>
#include <string>
#include <cassert>
#include <type_traits>
#include <limits>
#include <cmath>
#line 12 "tools/bigdecimal.hpp"
#include <iterator>
#line 1 "tools/bigint.hpp"



#line 5 "tools/bigint.hpp"
#include <array>
#line 9 "tools/bigint.hpp"
#include <cstdint>
#line 12 "tools/bigint.hpp"
#include <tuple>
#include <iomanip>
#line 17 "tools/bigint.hpp"
#include <utility>
#include <vector>
#line 1 "lib/ac-library/atcoder/convolution.hpp"



#line 9 "lib/ac-library/atcoder/convolution.hpp"

#line 1 "lib/ac-library/atcoder/internal_bit.hpp"



#ifdef _MSC_VER
#include <intrin.h>
#endif

#if __cplusplus >= 202002L
#include <bit>
#endif

namespace atcoder {

namespace internal {

#if __cplusplus >= 202002L

using std::bit_ceil;

#else

// @return same with std::bit::bit_ceil
unsigned int bit_ceil(unsigned int n) {
    unsigned int x = 1;
    while (x < (unsigned int)(n)) x *= 2;
    return x;
}

#endif

// @param n `1 <= n`
// @return same with std::bit::countr_zero
int countr_zero(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

// @param n `1 <= n`
// @return same with std::bit::countr_zero
constexpr int countr_zero_constexpr(unsigned int n) {
    int x = 0;
    while (!(n & (1 << x))) x++;
    return x;
}

}  // namespace internal

}  // namespace atcoder


#line 1 "lib/ac-library/atcoder/modint.hpp"



#line 5 "lib/ac-library/atcoder/modint.hpp"
#include <numeric>
#line 7 "lib/ac-library/atcoder/modint.hpp"

#ifdef _MSC_VER
#include <intrin.h>
#endif

#line 1 "lib/ac-library/atcoder/internal_math.hpp"



#line 5 "lib/ac-library/atcoder/internal_math.hpp"

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned long long y = x * _m;
        return (unsigned int)(z - y + (z < y ? _m : 0));
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#line 1 "lib/ac-library/atcoder/internal_type_traits.hpp"



#line 7 "lib/ac-library/atcoder/internal_type_traits.hpp"

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


#line 14 "lib/ac-library/atcoder/modint.hpp"

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


#line 12 "lib/ac-library/atcoder/convolution.hpp"

namespace atcoder {

namespace internal {

template <class mint,
          int g = internal::primitive_root<mint::mod()>,
          internal::is_static_modint_t<mint>* = nullptr>
struct fft_info {
    static constexpr int rank2 = countr_zero_constexpr(mint::mod() - 1);
    std::array<mint, rank2 + 1> root;   // root[i]^(2^i) == 1
    std::array<mint, rank2 + 1> iroot;  // root[i] * iroot[i] == 1

    std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;
    std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;

    std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;
    std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;

    fft_info() {
        root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
        iroot[rank2] = root[rank2].inv();
        for (int i = rank2 - 1; i >= 0; i--) {
            root[i] = root[i + 1] * root[i + 1];
            iroot[i] = iroot[i + 1] * iroot[i + 1];
        }

        {
            mint prod = 1, iprod = 1;
            for (int i = 0; i <= rank2 - 2; i++) {
                rate2[i] = root[i + 2] * prod;
                irate2[i] = iroot[i + 2] * iprod;
                prod *= iroot[i + 2];
                iprod *= root[i + 2];
            }
        }
        {
            mint prod = 1, iprod = 1;
            for (int i = 0; i <= rank2 - 3; i++) {
                rate3[i] = root[i + 3] * prod;
                irate3[i] = iroot[i + 3] * iprod;
                prod *= iroot[i + 3];
                iprod *= root[i + 3];
            }
        }
    }
};

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
    int n = int(a.size());
    int h = internal::countr_zero((unsigned int)n);

    static const fft_info<mint> info;

    int len = 0;  // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
    while (len < h) {
        if (h - len == 1) {
            int p = 1 << (h - len - 1);
            mint rot = 1;
            for (int s = 0; s < (1 << len); s++) {
                int offset = s << (h - len);
                for (int i = 0; i < p; i++) {
                    auto l = a[i + offset];
                    auto r = a[i + offset + p] * rot;
                    a[i + offset] = l + r;
                    a[i + offset + p] = l - r;
                }
                if (s + 1 != (1 << len))
                    rot *= info.rate2[countr_zero(~(unsigned int)(s))];
            }
            len++;
        } else {
            // 4-base
            int p = 1 << (h - len - 2);
            mint rot = 1, imag = info.root[2];
            for (int s = 0; s < (1 << len); s++) {
                mint rot2 = rot * rot;
                mint rot3 = rot2 * rot;
                int offset = s << (h - len);
                for (int i = 0; i < p; i++) {
                    auto mod2 = 1ULL * mint::mod() * mint::mod();
                    auto a0 = 1ULL * a[i + offset].val();
                    auto a1 = 1ULL * a[i + offset + p].val() * rot.val();
                    auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();
                    auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();
                    auto a1na3imag =
                        1ULL * mint(a1 + mod2 - a3).val() * imag.val();
                    auto na2 = mod2 - a2;
                    a[i + offset] = a0 + a2 + a1 + a3;
                    a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
                    a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
                    a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
                }
                if (s + 1 != (1 << len))
                    rot *= info.rate3[countr_zero(~(unsigned int)(s))];
            }
            len += 2;
        }
    }
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
    int n = int(a.size());
    int h = internal::countr_zero((unsigned int)n);

    static const fft_info<mint> info;

    int len = h;  // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
    while (len) {
        if (len == 1) {
            int p = 1 << (h - len);
            mint irot = 1;
            for (int s = 0; s < (1 << (len - 1)); s++) {
                int offset = s << (h - len + 1);
                for (int i = 0; i < p; i++) {
                    auto l = a[i + offset];
                    auto r = a[i + offset + p];
                    a[i + offset] = l + r;
                    a[i + offset + p] =
                        (unsigned long long)(mint::mod() + l.val() - r.val()) *
                        irot.val();
                    ;
                }
                if (s + 1 != (1 << (len - 1)))
                    irot *= info.irate2[countr_zero(~(unsigned int)(s))];
            }
            len--;
        } else {
            // 4-base
            int p = 1 << (h - len);
            mint irot = 1, iimag = info.iroot[2];
            for (int s = 0; s < (1 << (len - 2)); s++) {
                mint irot2 = irot * irot;
                mint irot3 = irot2 * irot;
                int offset = s << (h - len + 2);
                for (int i = 0; i < p; i++) {
                    auto a0 = 1ULL * a[i + offset + 0 * p].val();
                    auto a1 = 1ULL * a[i + offset + 1 * p].val();
                    auto a2 = 1ULL * a[i + offset + 2 * p].val();
                    auto a3 = 1ULL * a[i + offset + 3 * p].val();

                    auto a2na3iimag =
                        1ULL *
                        mint((mint::mod() + a2 - a3) * iimag.val()).val();

                    a[i + offset] = a0 + a1 + a2 + a3;
                    a[i + offset + 1 * p] =
                        (a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();
                    a[i + offset + 2 * p] =
                        (a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) *
                        irot2.val();
                    a[i + offset + 3 * p] =
                        (a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) *
                        irot3.val();
                }
                if (s + 1 != (1 << (len - 2)))
                    irot *= info.irate3[countr_zero(~(unsigned int)(s))];
            }
            len -= 2;
        }
    }
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_naive(const std::vector<mint>& a,
                                    const std::vector<mint>& b) {
    int n = int(a.size()), m = int(b.size());
    std::vector<mint> ans(n + m - 1);
    if (n < m) {
        for (int j = 0; j < m; j++) {
            for (int i = 0; i < n; i++) {
                ans[i + j] += a[i] * b[j];
            }
        }
    } else {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                ans[i + j] += a[i] * b[j];
            }
        }
    }
    return ans;
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) {
    int n = int(a.size()), m = int(b.size());
    int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
    a.resize(z);
    internal::butterfly(a);
    b.resize(z);
    internal::butterfly(b);
    for (int i = 0; i < z; i++) {
        a[i] *= b[i];
    }
    internal::butterfly_inv(a);
    a.resize(n + m - 1);
    mint iz = mint(z).inv();
    for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
    return a;
}

}  // namespace internal

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
    assert((mint::mod() - 1) % z == 0);

    if (std::min(n, m) <= 60) return convolution_naive(a, b);
    return internal::convolution_fft(a, b);
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(const std::vector<mint>& a,
                              const std::vector<mint>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
    assert((mint::mod() - 1) % z == 0);

    if (std::min(n, m) <= 60) return convolution_naive(a, b);
    return internal::convolution_fft(a, b);
}

template <unsigned int mod = 998244353,
          class T,
          std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    using mint = static_modint<mod>;

    int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
    assert((mint::mod() - 1) % z == 0);

    std::vector<mint> a2(n), b2(m);
    for (int i = 0; i < n; i++) {
        a2[i] = mint(a[i]);
    }
    for (int i = 0; i < m; i++) {
        b2[i] = mint(b[i]);
    }
    auto c2 = convolution(std::move(a2), std::move(b2));
    std::vector<T> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        c[i] = c2[i].val();
    }
    return c;
}

std::vector<long long> convolution_ll(const std::vector<long long>& a,
                                      const std::vector<long long>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    static constexpr unsigned long long MOD1 = 754974721;  // 2^24
    static constexpr unsigned long long MOD2 = 167772161;  // 2^25
    static constexpr unsigned long long MOD3 = 469762049;  // 2^26
    static constexpr unsigned long long M2M3 = MOD2 * MOD3;
    static constexpr unsigned long long M1M3 = MOD1 * MOD3;
    static constexpr unsigned long long M1M2 = MOD1 * MOD2;
    static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;

    static constexpr unsigned long long i1 =
        internal::inv_gcd(MOD2 * MOD3, MOD1).second;
    static constexpr unsigned long long i2 =
        internal::inv_gcd(MOD1 * MOD3, MOD2).second;
    static constexpr unsigned long long i3 =
        internal::inv_gcd(MOD1 * MOD2, MOD3).second;
        
    static constexpr int MAX_AB_BIT = 24;
    static_assert(MOD1 % (1ull << MAX_AB_BIT) == 1, "MOD1 isn't enough to support an array length of 2^24.");
    static_assert(MOD2 % (1ull << MAX_AB_BIT) == 1, "MOD2 isn't enough to support an array length of 2^24.");
    static_assert(MOD3 % (1ull << MAX_AB_BIT) == 1, "MOD3 isn't enough to support an array length of 2^24.");
    assert(n + m - 1 <= (1 << MAX_AB_BIT));

    auto c1 = convolution<MOD1>(a, b);
    auto c2 = convolution<MOD2>(a, b);
    auto c3 = convolution<MOD3>(a, b);

    std::vector<long long> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        unsigned long long x = 0;
        x += (c1[i] * i1) % MOD1 * M2M3;
        x += (c2[i] * i2) % MOD2 * M1M3;
        x += (c3[i] * i3) % MOD3 * M1M2;
        // B = 2^63, -B <= x, r(real value) < B
        // (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
        // r = c1[i] (mod MOD1)
        // focus on MOD1
        // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
        // r = x,
        //     x - M' + (0 or 2B),
        //     x - 2M' + (0, 2B or 4B),
        //     x - 3M' + (0, 2B, 4B or 6B) (without mod!)
        // (r - x) = 0, (0)
        //           - M' + (0 or 2B), (1)
        //           -2M' + (0 or 2B or 4B), (2)
        //           -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
        // we checked that
        //   ((1) mod MOD1) mod 5 = 2
        //   ((2) mod MOD1) mod 5 = 3
        //   ((3) mod MOD1) mod 5 = 4
        long long diff =
            c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
        if (diff < 0) diff += MOD1;
        static constexpr unsigned long long offset[5] = {
            0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
        x -= offset[diff % 5];
        c[i] = x;
    }

    return c;
}

}  // namespace atcoder


#line 1 "tools/abs.hpp"



namespace tools {
  constexpr float abs(const float x) {
    return x < 0 ? -x : x;
  }
  constexpr double abs(const double x) {
    return x < 0 ? -x : x;
  }
  constexpr long double abs(const long double x) {
    return x < 0 ? -x : x;
  }
  constexpr int abs(const int x) {
    return x < 0 ? -x : x;
  }
  constexpr long abs(const long x) {
    return x < 0 ? -x : x;
  }
  constexpr long long abs(const long long x) {
    return x < 0 ? -x : x;
  }
  constexpr unsigned int abs(const unsigned int x) {
    return x;
  }
  constexpr unsigned long abs(const unsigned long x) {
    return x;
  }
  constexpr unsigned long long abs(const unsigned long long x) {
    return x;
  }
}


#line 1 "tools/ceil.hpp"



#line 1 "tools/is_integral.hpp"



#line 5 "tools/is_integral.hpp"

namespace tools {
  template <typename T>
  struct is_integral : ::std::is_integral<T> {};

  template <typename T>
  inline constexpr bool is_integral_v = ::tools::is_integral<T>::value;
}


#line 1 "tools/is_unsigned.hpp"



#line 5 "tools/is_unsigned.hpp"

namespace tools {
  template <typename T>
  struct is_unsigned : ::std::is_unsigned<T> {};

  template <typename T>
  inline constexpr bool is_unsigned_v = ::tools::is_unsigned<T>::value;
}


#line 8 "tools/ceil.hpp"

namespace tools {
  template <typename M, typename N> requires (
    ::tools::is_integral_v<M> && !::std::is_same_v<::std::remove_cv_t<M>, bool> &&
    ::tools::is_integral_v<N> && !::std::is_same_v<::std::remove_cv_t<N>, bool>)
  constexpr ::std::common_type_t<M, N> ceil(const M x, const N y) noexcept {
    assert(y != 0);
    if (y >= 0) {
      if (x > 0) {
        return (x - 1) / y + 1;
      } else {
        if constexpr (::tools::is_unsigned_v<::std::common_type_t<M, N>>) {
          return 0;
        } else {
          return x / y;
        }
      }
    } else {
      if (x >= 0) {
        if constexpr (::tools::is_unsigned_v<::std::common_type_t<M, N>>) {
          return 0;
        } else {
          return x / y;
        }
      } else {
        return (x + 1) / y + 1;
      }
    }
  }
}


#line 1 "tools/chmin.hpp"



#line 6 "tools/chmin.hpp"

namespace tools {

  template <typename M, typename N>
  bool chmin(M& lhs, const N& rhs) {
    bool updated;
    if constexpr (::std::is_integral_v<M> && ::std::is_integral_v<N>) {
      updated = ::std::cmp_less(rhs, lhs);
    } else {
      updated = rhs < lhs;
    }
    if (updated) lhs = rhs;
    return updated;
  }
}


#line 1 "tools/floor.hpp"



#line 7 "tools/floor.hpp"

namespace tools {

  template <typename M, typename N> requires (
    ::tools::is_integral_v<M> && !::std::is_same_v<::std::remove_cv_t<M>, bool> &&
    ::tools::is_integral_v<N> && !::std::is_same_v<::std::remove_cv_t<N>, bool>)
  constexpr ::std::common_type_t<M, N> floor(const M x, const N y) noexcept {
    assert(y != 0);
    if (y >= 0) {
      if (x >= 0) {
        return x / y;
      } else {
        return (x + 1) / y - 1;
      }
    } else {
      if (x > 0) {
        return (x - 1) / y - 1;
      } else {
        return x / y;
      }
    }
  }
}


#line 1 "tools/floor_log2.hpp"



#line 1 "tools/bit_width.hpp"



#include <bit>
#line 1 "tools/is_signed.hpp"



#line 5 "tools/is_signed.hpp"

namespace tools {
  template <typename T>
  struct is_signed : ::std::is_signed<T> {};

  template <typename T>
  inline constexpr bool is_signed_v = ::tools::is_signed<T>::value;
}


#line 1 "tools/make_unsigned.hpp"



#line 5 "tools/make_unsigned.hpp"

namespace tools {
  template <typename T>
  struct make_unsigned : ::std::make_unsigned<T> {};

  template <typename T>
  using make_unsigned_t = typename ::tools::make_unsigned<T>::type;
}


#line 10 "tools/bit_width.hpp"

namespace tools {
  template <typename T>
  constexpr int bit_width(T) noexcept;

  template <typename T>
  constexpr int bit_width(const T x) noexcept {
    static_assert(::tools::is_integral_v<T> && !::std::is_same_v<::std::remove_cv_t<T>, bool>);
    if constexpr (::tools::is_signed_v<T>) {
      assert(x >= 0);
      return ::tools::bit_width<::tools::make_unsigned_t<T>>(x);
    } else {
      return ::std::bit_width(x);
    }
  }
}


#line 6 "tools/floor_log2.hpp"

namespace tools {
  template <typename T>
  constexpr T floor_log2(T x) noexcept {
    assert(x > 0);
    return ::tools::bit_width(x) - 1;
  }
}


#line 1 "tools/garner2.hpp"



#line 1 "tools/is_prime.hpp"



#line 1 "tools/prod_mod.hpp"



#line 1 "tools/uint128_t.hpp"



#line 1 "tools/detail/int128_t.hpp"



#line 8 "tools/detail/int128_t.hpp"
#include <functional>
#line 12 "tools/detail/int128_t.hpp"
#include <string_view>
#line 1 "tools/bit_ceil.hpp"



#line 10 "tools/bit_ceil.hpp"

namespace tools {
  template <typename T>
  constexpr T bit_ceil(T) noexcept;

  template <typename T>
  constexpr T bit_ceil(const T x) noexcept {
    static_assert(::tools::is_integral_v<T> && !::std::is_same_v<::std::remove_cv_t<T>, bool>);
    if constexpr (::tools::is_signed_v<T>) {
      assert(x >= 0);
      return ::tools::bit_ceil<::tools::make_unsigned_t<T>>(x);
    } else {
      return ::std::bit_ceil(x);
    }
  }
}


#line 1 "tools/bit_floor.hpp"



#line 10 "tools/bit_floor.hpp"

namespace tools {
  template <typename T>
  constexpr T bit_floor(T) noexcept;

  template <typename T>
  constexpr T bit_floor(const T x) noexcept {
    static_assert(::tools::is_integral_v<T> && !::std::is_same_v<::std::remove_cv_t<T>, bool>);
    if constexpr (::tools::is_signed_v<T>) {
      assert(x >= 0);
      return ::tools::bit_floor<::tools::make_unsigned_t<T>>(x);
    } else {
      return ::std::bit_floor(x);
    }
  }
}


#line 1 "tools/countr_zero.hpp"



#line 12 "tools/countr_zero.hpp"

namespace tools {
  template <typename T>
  constexpr int countr_zero(const T x) noexcept {
    static_assert(::tools::is_integral_v<T> && !::std::is_same_v<::std::remove_cv_t<T>, bool>);
    if constexpr (::tools::is_signed_v<T>) {
      assert(x >= 0);
      return ::std::min(::tools::countr_zero<::tools::make_unsigned_t<T>>(x), ::std::numeric_limits<T>::digits);
    } else {
      return ::std::countr_zero(x);
    }
  }
}


#line 1 "tools/hash_combine.hpp"



#line 6 "tools/hash_combine.hpp"

// Source: https://github.com/google/cityhash/blob/f5dc54147fcce12cefd16548c8e760d68ac04226/src/city.h
// License: MIT
// Author: Google Inc.

// Copyright (c) 2011 Google, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

namespace tools {
  template <typename T>
  void hash_combine(::std::size_t& seed, const T& v) {
    static const ::std::hash<T> hasher;
    static constexpr ::std::size_t k_mul = 0x9ddfea08eb382d69ULL;
    ::std::size_t a = (hasher(v) ^ seed) * k_mul;
    a ^= (a >> 47);
    ::std::size_t b = (seed ^ a) * k_mul;
    b ^= (b >> 47);
    seed = b * k_mul;
  }
}


#line 1 "tools/make_signed.hpp"



#line 5 "tools/make_signed.hpp"

namespace tools {
  template <typename T>
  struct make_signed : ::std::make_signed<T> {};

  template <typename T>
  using make_signed_t = typename ::tools::make_signed<T>::type;
}


#line 1 "tools/now.hpp"



#include <chrono>

namespace tools {
  inline long long now() {
    return ::std::chrono::duration_cast<::std::chrono::nanoseconds>(::std::chrono::high_resolution_clock::now().time_since_epoch()).count();
  }
}


#line 25 "tools/detail/int128_t.hpp"

namespace tools {
  using uint128_t = unsigned __int128;
  using int128_t = __int128;

  namespace detail {
    namespace int128_t {
      constexpr ::tools::uint128_t parse_unsigned(const ::std::string_view s) noexcept {
        assert(!s.empty());
        ::tools::uint128_t x = 0;
        ::std::size_t i = s[0] == '+';
        if (i + 1 < s.size() && s[i] == '0' && (s[i + 1] == 'x' || s[i + 1] == 'X')) {
          for (i += 2; i < s.size(); ++i) {
            assert(('0' <= s[i] && s[i] <= '9') || ('a' <= s[i] && s[i] <= 'f') || ('A' <= s[i] && s[i] <= 'F'));
            x <<= 4;
            if ('0' <= s[i] && s[i] <= '9') {
              x |= s[i] - '0';
            } else if ('a' <= s[i] && s[i] <= 'f') {
              x |= s[i] - 'a' + 10;
            } else {
              x |= s[i] - 'A' + 10;
            }
          }
        } else {
          for (; i < s.size(); ++i) {
            assert('0' <= s[i] && s[i] <= '9');
            x *= 10;
            x += s[i] - '0';
          }
        }
        return x;
      }

      constexpr ::tools::int128_t parse_signed(const ::std::string_view s) noexcept {
        assert(!s.empty());
        ::tools::int128_t x = 0;
        if (s[0] == '-') {
          ::std::size_t i = 1;
          if (i + 1 < s.size() && s[i] == '0' && (s[i + 1] == 'x' || s[i + 1] == 'X')) {
            for (i += 2; i < s.size(); ++i) {
              assert(('0' <= s[i] && s[i] <= '9') || ('a' <= s[i] && s[i] <= 'f') || ('A' <= s[i] && s[i] <= 'F'));
              x *= 16;
              if ('0' <= s[i] && s[i] <= '9') {
                x -= s[i] - '0';
              } else if ('a' <= s[i] && s[i] <= 'f') {
                x -= s[i] - 'a' + 10;
              } else {
                x -= s[i] - 'A' + 10;
              }
            }
          } else {
            for (; i < s.size(); ++i) {
              assert('0' <= s[i] && s[i] <= '9');
              x *= 10;
              x -= s[i] - '0';
            }
          }
        } else {
          ::std::size_t i = s[0] == '+';
          if (i + 1 < s.size() && s[i] == '0' && (s[i + 1] == 'x' || s[i + 1] == 'X')) {
            for (i += 2; i < s.size(); ++i) {
              assert(('0' <= s[i] && s[i] <= '9') || ('a' <= s[i] && s[i] <= 'f') || ('A' <= s[i] && s[i] <= 'F'));
              x <<= 4;
              if ('0' <= s[i] && s[i] <= '9') {
                x |= s[i] - '0';
              } else if ('a' <= s[i] && s[i] <= 'f') {
                x |= s[i] - 'a' + 10;
              } else {
                x |= s[i] - 'A' + 10;
              }
            }
          } else {
            for (; i < s.size(); ++i) {
              assert('0' <= s[i] && s[i] <= '9');
              x *= 10;
              x += s[i] - '0';
            }
          }
        }
        return x;
      }
    }
  }

  constexpr ::tools::uint128_t abs(const ::tools::uint128_t& x) noexcept {
    return x;
  }
  constexpr ::tools::int128_t abs(const ::tools::int128_t& x) {
    return x >= 0 ? x : -x;
  }
}

#define UINT128_C(c) ::tools::detail::int128_t::parse_unsigned(#c)
#define INT128_C(c) ::tools::detail::int128_t::parse_signed(#c)

inline ::std::istream& operator>>(::std::istream& is, ::tools::uint128_t& x) {
  ::std::string s;
  is >> s;
  x = ::tools::detail::int128_t::parse_unsigned(s);
  return is;
}
inline ::std::istream& operator>>(::std::istream& is, ::tools::int128_t& x) {
  ::std::string s;
  is >> s;
  x = ::tools::detail::int128_t::parse_signed(s);
  return is;
}

inline ::std::ostream& operator<<(::std::ostream& os, ::tools::uint128_t x) {
  ::std::string s;
  if (x > 0) {
    while (x > 0) {
      s.push_back('0' + x % 10);
      x /= 10;
    }
  } else {
    s.push_back('0');
  }

  ::std::ranges::reverse(s);
  return os << s;
}
inline ::std::ostream& operator<<(::std::ostream& os, ::tools::int128_t x) {
  ::std::string s;
  if (x > 0) {
    while (x > 0) {
      s.push_back('0' + x % 10);
      x /= 10;
    }
  } else if (x < 0) {
    while (x < 0) {
      s.push_back('0' + (-(x % 10)));
      x /= 10;
    }
    s.push_back('-');
  } else {
    s.push_back('0');
  }

  ::std::ranges::reverse(s);
  return os << s;
}

#if defined(__GLIBCXX__) && defined(__STRICT_ANSI__)
namespace std {
  template <>
  struct hash<::tools::uint128_t> {
    ::std::size_t operator()(const ::tools::uint128_t& x) const {
      static const ::std::size_t seed = ::tools::now();

      ::std::size_t hash = seed;
      ::tools::hash_combine(hash, static_cast<::std::uint64_t>(x >> 64));
      ::tools::hash_combine(hash, static_cast<::std::uint64_t>(x & ((UINT128_C(1) << 64) - 1)));
      return hash;
    }
  };
  template <>
  struct hash<::tools::int128_t> {
    ::std::size_t operator()(const ::tools::int128_t& x) const {
      static ::std::hash<::tools::uint128_t> hasher;
      return hasher(static_cast<::tools::uint128_t>(x));
    }
  };
}
#endif

namespace tools {
  template <>
  struct is_integral<::tools::int128_t> : ::std::true_type {};
  template <>
  struct is_integral<::tools::uint128_t> : ::std::true_type {};
  template <>
  struct is_integral<const ::tools::int128_t> : ::std::true_type {};
  template <>
  struct is_integral<const ::tools::uint128_t> : ::std::true_type {};
  template <>
  struct is_integral<volatile ::tools::int128_t> : ::std::true_type {};
  template <>
  struct is_integral<volatile ::tools::uint128_t> : ::std::true_type {};
  template <>
  struct is_integral<const volatile ::tools::int128_t> : ::std::true_type {};
  template <>
  struct is_integral<const volatile ::tools::uint128_t> : ::std::true_type {};

  template <>
  struct is_signed<::tools::int128_t> : ::std::true_type {};
  template <>
  struct is_signed<::tools::uint128_t> : ::std::false_type {};
  template <>
  struct is_signed<const ::tools::int128_t> : ::std::true_type {};
  template <>
  struct is_signed<const ::tools::uint128_t> : ::std::false_type {};
  template <>
  struct is_signed<volatile ::tools::int128_t> : ::std::true_type {};
  template <>
  struct is_signed<volatile ::tools::uint128_t> : ::std::false_type {};
  template <>
  struct is_signed<const volatile ::tools::int128_t> : ::std::true_type {};
  template <>
  struct is_signed<const volatile ::tools::uint128_t> : ::std::false_type {};

  template <>
  struct is_unsigned<::tools::int128_t> : ::std::false_type {};
  template <>
  struct is_unsigned<::tools::uint128_t> : ::std::true_type {};
  template <>
  struct is_unsigned<const ::tools::int128_t> : ::std::false_type {};
  template <>
  struct is_unsigned<const ::tools::uint128_t> : ::std::true_type {};
  template <>
  struct is_unsigned<volatile ::tools::int128_t> : ::std::false_type {};
  template <>
  struct is_unsigned<volatile ::tools::uint128_t> : ::std::true_type {};
  template <>
  struct is_unsigned<const volatile ::tools::int128_t> : ::std::false_type {};
  template <>
  struct is_unsigned<const volatile ::tools::uint128_t> : ::std::true_type {};

  template <>
  struct make_signed<::tools::int128_t> {
    using type = ::tools::int128_t;
  };
  template <>
  struct make_signed<::tools::uint128_t> {
    using type = ::tools::int128_t;
  };
  template <>
  struct make_signed<const ::tools::int128_t> {
    using type = const ::tools::int128_t;
  };
  template <>
  struct make_signed<const ::tools::uint128_t> {
    using type = const ::tools::int128_t;
  };
  template <>
  struct make_signed<volatile ::tools::int128_t> {
    using type = volatile ::tools::int128_t;
  };
  template <>
  struct make_signed<volatile ::tools::uint128_t> {
    using type = volatile ::tools::int128_t;
  };
  template <>
  struct make_signed<const volatile ::tools::int128_t> {
    using type = const volatile ::tools::int128_t;
  };
  template <>
  struct make_signed<const volatile ::tools::uint128_t> {
    using type = const volatile ::tools::int128_t;
  };

  template <>
  struct make_unsigned<::tools::int128_t> {
    using type = ::tools::uint128_t;
  };
  template <>
  struct make_unsigned<::tools::uint128_t> {
    using type = ::tools::uint128_t;
  };
  template <>
  struct make_unsigned<const ::tools::int128_t> {
    using type = const ::tools::uint128_t;
  };
  template <>
  struct make_unsigned<const ::tools::uint128_t> {
    using type = const ::tools::uint128_t;
  };
  template <>
  struct make_unsigned<volatile ::tools::int128_t> {
    using type = volatile ::tools::uint128_t;
  };
  template <>
  struct make_unsigned<volatile ::tools::uint128_t> {
    using type = volatile ::tools::uint128_t;
  };
  template <>
  struct make_unsigned<const volatile ::tools::int128_t> {
    using type = const volatile ::tools::uint128_t;
  };
  template <>
  struct make_unsigned<const volatile ::tools::uint128_t> {
    using type = const volatile ::tools::uint128_t;
  };

#if defined(__GLIBCXX__) && defined(__STRICT_ANSI__)
  template <>
  constexpr ::tools::uint128_t bit_ceil<::tools::uint128_t>(::tools::uint128_t x) noexcept {
    if (x <= 1) return 1;
    --x;
    x |= x >> 1;
    x |= x >> 2;
    x |= x >> 4;
    x |= x >> 8;
    x |= x >> 16;
    x |= x >> 32;
    x |= x >> 64;
    return ++x;
  }

  template <>
  constexpr ::tools::uint128_t bit_floor<::tools::uint128_t>(::tools::uint128_t x) noexcept {
    x |= x >> 1;
    x |= x >> 2;
    x |= x >> 4;
    x |= x >> 8;
    x |= x >> 16;
    x |= x >> 32;
    x |= x >> 64;
    return x & ~(x >> 1);
  }

  template <>
  constexpr int bit_width<::tools::uint128_t>(::tools::uint128_t x) noexcept {
    int w = 0;
    if (x & UINT128_C(0xffffffffffffffff0000000000000000)) {
      x >>= 64;
      w += 64;
    }
    if (x & UINT128_C(0xffffffff00000000)) {
      x >>= 32;
      w += 32;
    }
    if (x & UINT128_C(0xffff0000)) {
      x >>= 16;
      w += 16;
    }
    if (x & UINT128_C(0xff00)) {
      x >>= 8;
      w += 8;
    }
    if (x & UINT128_C(0xf0)) {
      x >>= 4;
      w += 4;
    }
    if (x & UINT128_C(0xc)) {
      x >>= 2;
      w += 2;
    }
    if (x & UINT128_C(0x2)) {
      x >>= 1;
      w += 1;
    }
    w += x;
    return w;
  }

  namespace detail {
    namespace countr_zero {
      template <::std::size_t N>
      struct ntz_traits;

      template <>
      struct ntz_traits<128> {
        using type = ::tools::uint128_t;
        static constexpr int shift = 120;
        static constexpr type magic = UINT128_C(0x01061438916347932a5cd9d3ead7b77f);
        static constexpr int ntz_table[255] = {
          128,   0,   1,  -1,   2,  -1,   8,  -1,   3,  -1,  15,  -1,   9,  -1,  22,  -1,
            4,  -1,  29,  -1,  16,  -1,  36,  -1,  10,  -1,  43,  -1,  23,  -1,  50,  -1,
            5,  -1,  33,  -1,  30,  -1,  57,  -1,  17,  -1,  64,  -1,  37,  -1,  71,  -1,
           11,  -1,  60,  -1,  44,  -1,  78,  -1,  24,  -1,  85,  -1,  51,  -1,  92,  -1,
           -1,   6,  -1,  20,  -1,  34,  -1,  48,  31,  -1,  -1,  69,  58,  -1,  -1,  90,
           18,  -1,  67,  -1,  65,  -1,  99,  -1,  38,  -1, 101,  -1,  72,  -1, 106,  -1,
           -1,  12,  -1,  40,  -1,  61,  -1,  82,  45,  -1,  -1, 103,  79,  -1, 113,  -1,
           -1,  25,  -1,  74,  86,  -1,  -1, 116,  -1,  52,  -1, 108,  -1,  93,  -1, 120,
          127,  -1,  -1,   7,  -1,  14,  -1,  21,  -1,  28,  -1,  35,  -1,  42,  -1,  49,
           -1,  32,  -1,  56,  -1,  63,  -1,  70,  -1,  59,  -1,  77,  -1,  84,  -1,  91,
           -1,  19,  -1,  47,  -1,  68,  -1,  89,  -1,  66,  -1,  98,  -1, 100,  -1, 105,
           -1,  39,  -1,  81,  -1, 102,  -1, 112,  -1,  73,  -1, 115,  -1, 107,  -1, 119,
          126,  -1,  13,  -1,  27,  -1,  41,  -1,  -1,  55,  62,  -1,  -1,  76,  83,  -1,
           -1,  46,  -1,  88,  -1,  97,  -1, 104,  -1,  80,  -1, 111,  -1, 114,  -1, 118,
          125,  -1,  26,  -1,  54,  -1,  75,  -1,  -1,  87,  96,  -1,  -1, 110,  -1, 117,
          124,  -1,  53,  -1,  -1,  95, 109,  -1, 123,  -1,  94,  -1, 122,  -1, 121
        };
      };

      template <typename T>
      constexpr int impl(const T x) noexcept {
        using tr = ::tools::detail::countr_zero::ntz_traits<::std::numeric_limits<T>::digits>;
        using type = typename tr::type;
        return tr::ntz_table[static_cast<type>(tr::magic * static_cast<type>(x & -x)) >> tr::shift];
      }
    }
  }

  template <>
  constexpr int countr_zero<::tools::uint128_t>(const ::tools::uint128_t x) noexcept {
    return ::tools::detail::countr_zero::impl(x);
  }
#endif
}


#line 5 "tools/uint128_t.hpp"


#line 5 "tools/prod_mod.hpp"

namespace tools {

  template <typename T1, typename T2, typename T3>
  constexpr T3 prod_mod(const T1 x, const T2 y, const T3 m) {
    using u128 = ::tools::uint128_t;
    u128 prod_mod = u128(x >= 0 ? x : -x) * u128(y >= 0 ? y : -y) % u128(m);
    if ((x >= 0) ^ (y >= 0)) prod_mod = u128(m) - prod_mod;
    return prod_mod;
  }
}


#line 1 "tools/pow_mod.hpp"



#line 1 "tools/mod.hpp"



#line 7 "tools/mod.hpp"

namespace tools {

  template <typename M, typename N> requires (
    ::tools::is_integral_v<M> && !::std::is_same_v<::std::remove_cv_t<M>, bool> &&
    ::tools::is_integral_v<N> && !::std::is_same_v<::std::remove_cv_t<N>, bool>)
  constexpr ::std::common_type_t<M, N> mod(const M a, const N b) noexcept {
    assert(b != 0);

    using UM = ::std::make_unsigned_t<M>;
    using UN = ::std::make_unsigned_t<N>;
    const UM ua = a >= 0 ? a : static_cast<UM>(-(a + 1)) + 1;
    const UN ub = b >= 0 ? b : static_cast<UN>(-(b + 1)) + 1;
    auto r = ua % ub;
    if (a < 0 && r > 0) {
      r = ub - r;
    }
    return r;
  }
}


#line 6 "tools/pow_mod.hpp"

namespace tools {

  template <typename T1, typename T2, typename T3>
  constexpr T3 pow_mod(const T1 x, T2 n, const T3 m) {
    if (m == 1) return 0;
    T3 r = 1;
    T3 y = ::tools::mod(x, m);
    while (n > 0) {
      if ((n & 1) > 0) {
        r = ::tools::prod_mod(r, y, m);
      }
      y = ::tools::prod_mod(y, y, m);
      n /= 2;
    }
    return r;
  }
}


#line 7 "tools/is_prime.hpp"

namespace tools {

  constexpr bool is_prime(const unsigned long long n) {
    constexpr ::std::array<unsigned long long, 7> bases = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};

    if (n <= 1) return false;
    if (n == 2) return true;
    if (n % 2 == 0) return false;

    auto d = n - 1;
    for (; d % 2 == 0; d /= 2);

    for (const auto a : bases) {
      if (a % n == 0) return true;

      auto power = d;
      auto target = ::tools::pow_mod(a, power, n);

      bool is_composite = true;
      if (target == 1) is_composite = false;
      for (; is_composite && power != n - 1; power *= 2, target = ::tools::prod_mod(target, target, n)) {
        if (target == n - 1) is_composite = false;
      }

      if (is_composite) {
        return false;
      }
    }

    return true;
  }
}


#line 6 "tools/garner2.hpp"

namespace tools {

  template <typename M1, typename M2>
  long long garner2(const M1& a, const M2& b) {
    using ull = unsigned long long;
    static constexpr ull m1_m2 = ull(M1::mod()) * ull(M2::mod());
    static const M2 m1_inv_mod_m2 = M2::raw(M1::mod()).inv();

    assert(M1::mod() < M2::mod());
    assert(::tools::is_prime(M1::mod()));
    assert(::tools::is_prime(M2::mod()));

    // t = (b - a) / M1; (mod M2)
    // return a + t * M1;
    const M2 t = (b - M2::raw(a.val())) * m1_inv_mod_m2;
    ull r = t.val();
    r *= M1::mod();
    r += a.val();
    if (r >= m1_m2) r -= m1_m2;
    return r;
  }
}


#line 1 "tools/gcd.hpp"



#line 6 "tools/gcd.hpp"

namespace tools {
  template <typename M, typename N>
  constexpr ::std::common_type_t<M, N> gcd(const M m, const N n) {
    return ::std::gcd(m, n);
  }
}


#line 1 "tools/int128_t.hpp"



#line 5 "tools/int128_t.hpp"


#line 1 "tools/pow2.hpp"



#line 6 "tools/pow2.hpp"

namespace tools {

  template <typename T, typename ::std::enable_if<::std::is_unsigned<T>::value, ::std::nullptr_t>::type = nullptr>
  constexpr T pow2(const T x) {
    return static_cast<T>(1) << x;
  }

  template <typename T, typename ::std::enable_if<::std::is_signed<T>::value, ::std::nullptr_t>::type = nullptr>
  constexpr T pow2(const T x) {
    return static_cast<T>(static_cast<typename ::std::make_unsigned<T>::type>(1) << static_cast<typename ::std::make_unsigned<T>::type>(x));
  }
}


#line 1 "tools/quo.hpp"



#line 7 "tools/quo.hpp"

namespace tools {

  template <typename M, typename N> requires (
    ::tools::is_integral_v<M> && !::std::is_same_v<::std::remove_cv_t<M>, bool> &&
    ::tools::is_integral_v<N> && !::std::is_same_v<::std::remove_cv_t<N>, bool>)
  constexpr ::std::common_type_t<M, N> quo(const M a, const N b) noexcept {
    assert(b != 0);

    if (a >= 0) {
      return a / b;
    } else {
      if (b >= 0) {
        return (a + 1) / b - 1;
      } else {
        return (a + 1) / b + 1;
      }
    }
  }
}


#line 33 "tools/bigint.hpp"

namespace tools {
  class bigint;

  ::tools::bigint abs(::tools::bigint x);

  class bigint {
  private:
    using mint1 = ::atcoder::static_modint<167772161>;
    using mint2 = ::atcoder::static_modint<469762049>;

    bool m_positive;
    ::std::vector<::std::int_fast32_t> m_digits;
    static constexpr ::std::int_fast32_t BASE = 10000;
    static constexpr ::std::int_fast32_t LOG10_BASE = 4;
    static constexpr ::std::array<::std::int_fast32_t, 5> POW10 = {1, 10, 100, 1000, 10000};

    static int compare_3way(const ::std::size_t lhs, const ::std::size_t rhs) {
      if (lhs < rhs) return -1;
      if (lhs == rhs) return 0;
      return 1;
    }
    static int compare_3way_abs(const ::tools::bigint& lhs, const ::tools::bigint& rhs) {
      if (const auto comp = ::tools::bigint::compare_3way(lhs.m_digits.size(), rhs.m_digits.size()); comp != 0) {
        return comp;
      }
      for (::std::size_t i = lhs.m_digits.size(); i --> 0;) {
        if (const auto comp = ::tools::bigint::compare_3way(lhs.m_digits[i], rhs.m_digits[i]); comp != 0) {
          return comp;
        }
      }
      return 0;
    }

    template <int LEVEL>
    ::tools::bigint& regularize() {
      if constexpr (LEVEL > 0) {
        if constexpr (LEVEL == 2) {
          for (::std::size_t i = 0; i + 1 < this->m_digits.size(); ++i) {
            this->m_digits[i + 1] += ::tools::quo(this->m_digits[i], BASE);
            this->m_digits[i] = ::tools::mod(this->m_digits[i], BASE);
          }
        } else {
          for (::std::size_t i = 0; i + 1 < this->m_digits.size(); ++i) {
            if (this->m_digits[i] < 0) {
              this->m_digits[i] += BASE;
              --this->m_digits[i + 1];
            } else if (this->m_digits[i] >= BASE) {
              this->m_digits[i] -= BASE;
              ++this->m_digits[i + 1];
            }
          }
        }
        if (!this->m_digits.empty() && this->m_digits.back() < 0) {
          this->m_positive = !this->m_positive;
          for (::std::size_t i = 0; i < this->m_digits.size(); ++i) {
            this->m_digits[i] = -this->m_digits[i];
          }
          for (::std::size_t i = 0; i + 1 < this->m_digits.size(); ++i) {
            if (this->m_digits[i] < 0) {
              this->m_digits[i] = BASE + this->m_digits[i];
              --this->m_digits[i + 1];
            }
          }
        }
        if constexpr (LEVEL == 2) {
          while (!this->m_digits.empty() && this->m_digits.back() >= BASE) {
            this->m_digits.push_back(this->m_digits.back() / BASE);
            this->m_digits[this->m_digits.size() - 2] %= BASE;
          }
        } else {
          if (!this->m_digits.empty() && this->m_digits.back() >= BASE) {
            this->m_digits.back() -= BASE;
            this->m_digits.push_back(1);
          }
        }
      }
      while (!this->m_digits.empty() && this->m_digits.back() == 0) {
        this->m_digits.pop_back();
      }
      if (this->m_digits.empty() && !this->m_positive) {
        this->m_positive = true;
      }
      return *this;
    }

  public:
    ::tools::bigint& negate() {
      if (!this->m_digits.empty()) {
        this->m_positive = !this->m_positive;
      }
      return *this;
    }
    ::tools::bigint& multiply_by_pow10(const ::std::ptrdiff_t exponent) {
      if (!this->m_digits.empty()) {
        const ::std::ptrdiff_t exponent10000 = ::tools::floor(exponent, LOG10_BASE);
        ::std::int_fast32_t mod = 0;
        if (exponent10000 > 0) {
          ::std::vector<::std::int_fast32_t> zero(exponent10000, 0);
          this->m_digits.insert(this->m_digits.begin(), zero.begin(), zero.end());
        } else if (exponent10000 < 0) {
          if (::std::ssize(this->m_digits) >= -exponent10000) {
            mod = this->m_digits[-exponent10000 - 1] / POW10[LOG10_BASE * (exponent10000 + 1) - exponent];
          }
          this->m_digits.erase(this->m_digits.begin(), this->m_digits.begin() + ::std::min<::std::size_t>(-exponent10000, this->m_digits.size()));
        }
        if (const ::std::int_fast32_t coefficient = POW10[exponent - LOG10_BASE * exponent10000]; coefficient > POW10[0]) {
          for (auto& d : this->m_digits) {
            d *= coefficient;
          }
          if (mod > 0) {
            if (this->m_digits.empty()) {
              this->m_digits.push_back(0);
            }
            this->m_digits[0] += mod;
          }
          this->regularize<2>();
        } else {
          this->regularize<0>();
        }
      }
      return *this;
    }
    ::tools::bigint& divide_by_pow10(const ::std::ptrdiff_t exponent) {
      this->multiply_by_pow10(-exponent);
      return *this;
    }
    static int compare_3way(const ::tools::bigint& lhs, const ::tools::bigint& rhs) {
      if (!lhs.m_positive && rhs.m_positive) return -1;
      if (lhs.m_positive && !rhs.m_positive) return 1;
      return ::tools::bigint::compare_3way_abs(lhs, rhs) * (lhs.m_positive ? 1 : -1);
    }
    int signum() const {
      if (!this->m_positive) return -1;
      if (this->m_digits.empty()) return 0;
      return 1;
    }
    ::std::size_t size() const {
      if (this->m_digits.empty()) return 0;
      return LOG10_BASE * (this->m_digits.size() - 1) + ::std::distance(POW10.begin(), ::std::upper_bound(POW10.begin(), POW10.end(), this->m_digits[this->m_digits.size() - 1]));
    }
    ::std::int_fast32_t operator[](const ::std::size_t i) const {
      return i < LOG10_BASE * this->m_digits.size() ? this->m_digits[i / LOG10_BASE] / POW10[i % LOG10_BASE] % 10 : 0;
    }

  private:
    template <bool PLUS>
    ::tools::bigint& internal_add(const ::tools::bigint& other) {
      if (this == &other) {
        if constexpr (PLUS) {
          for (auto& d : this->m_digits) d <<= 1;
          this->regularize<1>();
        } else {
          this->m_digits.clear();
          this->m_positive = true;
        }
      } else {
        const bool this_positive = this->m_positive;
        if (!this_positive) {
          this->negate();
        }
        this->m_digits.resize(::std::max(this->m_digits.size(), other.m_digits.size()));
        if (this_positive == (other.m_positive == PLUS)) {
          for (::std::size_t i = 0; i < other.m_digits.size(); ++i) {
            this->m_digits[i] += other.m_digits[i];
          }
        } else {
          for (::std::size_t i = 0; i < other.m_digits.size(); ++i) {
            this->m_digits[i] -= other.m_digits[i];
          }
        }
        this->regularize<1>();
        if (!this_positive) {
          this->negate();
        }
      }
      return *this;
    }

  public:
    bigint() : m_positive(true) {
    }
    bigint(const ::tools::bigint&) = default;
    bigint(::tools::bigint&&) = default;
    ~bigint() = default;
    ::tools::bigint& operator=(const ::tools::bigint&) = default;
    ::tools::bigint& operator=(::tools::bigint&&) = default;

    template <typename T, typename ::std::enable_if<::std::is_integral_v<T> || ::std::is_same_v<T, ::tools::int128_t> || ::std::is_same_v<T, ::tools::uint128_t>, ::std::nullptr_t>::type = nullptr>
    explicit bigint(T n) : m_positive(n >= 0) {
      while (n != 0) {
        this->m_digits.push_back(n % BASE);
        n /= BASE;
      }
      if (!this->m_positive) {
        for (auto& d : this->m_digits) {
          d = -d;
        }
      }
    }
    explicit bigint(const ::std::string& s) {
      assert(!s.empty());

      ::std::size_t offset;
      if (s[0] == '+') {
        this->m_positive = true;
        offset = 1;
      } else if (s[0] == '-') {
        this->m_positive = false;
        offset = 1;
      } else {
        this->m_positive = true;
        offset = 0;
      }

      this->m_digits.reserve(::tools::ceil<::std::size_t>(s.size() - offset, LOG10_BASE));
      for (::std::size_t i = 0; i < s.size() - offset; i += LOG10_BASE) {
        this->m_digits.push_back(0);
        for (::std::size_t j = ::std::min(i + LOG10_BASE, s.size() - offset); j --> i;) {
          assert('0' <= s[s.size() - 1 - j] && s[s.size() - 1 - j] <= '9');
          this->m_digits.back() = this->m_digits.back() * 10 + (s[s.size() - 1 - j] - '0');
        }
      }

      this->regularize<0>();
    }

    friend bool operator==(const ::tools::bigint& lhs, const ::tools::bigint& rhs) {
      return lhs.m_positive == rhs.m_positive && lhs.m_digits == rhs.m_digits;
    }
    friend bool operator!=(const ::tools::bigint& lhs, const ::tools::bigint& rhs) {
      return !(lhs == rhs);
    }
    friend bool operator<(const ::tools::bigint& lhs, const ::tools::bigint& rhs) {
      return ::tools::bigint::compare_3way(lhs, rhs) < 0;
    }
    friend bool operator>(const ::tools::bigint& lhs, const ::tools::bigint& rhs) {
      return ::tools::bigint::compare_3way(lhs, rhs) > 0;
    }
    friend bool operator<=(const ::tools::bigint& lhs, const ::tools::bigint& rhs) {
      return ::tools::bigint::compare_3way(lhs, rhs) <= 0;
    }
    friend bool operator>=(const ::tools::bigint& lhs, const ::tools::bigint& rhs) {
      return ::tools::bigint::compare_3way(lhs, rhs) >= 0;
    }

    ::tools::bigint operator+() const {
      return *this;
    }
    ::tools::bigint operator-() const {
      return ::tools::bigint(*this).negate();
    }

    ::tools::bigint& operator+=(const ::tools::bigint& other) {
      return this->internal_add<true>(other);
    }
    ::tools::bigint& operator-=(const ::tools::bigint& other) {
      return this->internal_add<false>(other);
    }
    ::tools::bigint& operator*=(const ::tools::bigint& other) {
      // Constraint derived from atcoder::convolution
      assert(this->m_digits.size() + other.m_digits.size() <= ::tools::pow2(25) + 1);

      ::std::vector<mint1> a1, b1;
      ::std::vector<mint2> a2, b2;
      a1.reserve(this->m_digits.size());
      a2.reserve(this->m_digits.size());
      b1.reserve(other.m_digits.size());
      b2.reserve(other.m_digits.size());
      for (const auto a_i : this->m_digits) {
        a1.push_back(mint1::raw(a_i));
        a2.push_back(mint2::raw(a_i));
      }
      for (const auto b_i : other.m_digits) {
        b1.push_back(mint1::raw(b_i));
        b2.push_back(mint2::raw(b_i));
      }

      const auto c1 = ::atcoder::convolution(a1, b1);
      const auto c2 = ::atcoder::convolution(a2, b2);

      this->m_digits.clear();
      this->m_digits.reserve(c1.size() + 1);
      long long carry = 0;
      for (::std::size_t i = 0; i < c1.size(); ++i) {

        // Since a_i <= 10^4 - 1 and b_i <= 10^4 - 1, c_i <= (10^4 - 1)^2 * min(this->m_digits.size(), other.m_digits.size()) holds.
        // In addition, since this->m_digits.size() + other.m_digits.size() <= 2^25 + 1, c_i <= (10^4 - 1)^2 * 2^24 = 1677386072457216 holds eventually.
        // 1677386072457216 < 167772161 * 469762049 = 78812994116517889 holds, so we can reconstruct c_i from mod(c_i, 167772161) and mod(c_i, 469762049) by CRT.
        long long c_i = ::tools::garner2(c1[i], c2[i]);

        c_i += carry;
        carry = c_i / BASE;
        c_i %= BASE;
        this->m_digits.push_back(c_i);
      }
      if (carry > 0) {
        this->m_digits.push_back(carry);
      }

      this->m_positive = this->m_positive == other.m_positive;
      this->regularize<0>();
      return *this;
    }

    friend ::tools::bigint operator+(const ::tools::bigint& lhs, const ::tools::bigint& rhs) {
      return ::tools::bigint(lhs) += rhs;
    }
    friend ::tools::bigint operator-(const ::tools::bigint& lhs, const ::tools::bigint& rhs) {
      return ::tools::bigint(lhs) -= rhs;
    }
    friend ::tools::bigint operator*(const ::tools::bigint& lhs, const ::tools::bigint& rhs) {
      return ::tools::bigint(lhs) *= rhs;
    }

    ::tools::bigint& operator++() {
      return *this += ::tools::bigint(1);
    }
    ::tools::bigint operator++(int) {
      ::tools::bigint old(*this);
      ++(*this);
      return old;
    }
    ::tools::bigint& operator--() {
      return *this -= ::tools::bigint(1);
    }
    ::tools::bigint operator--(int) {
      ::tools::bigint old(*this);
      --(*this);
      return old;
    }

  private:
    static const ::tools::bigint& divmod_naive_u64_threshold() {
      static const ::tools::bigint threshold((::std::numeric_limits<::std::uint_fast64_t>::max() - (BASE - 1)) / BASE);
      return threshold;
    }

    ::std::pair<::tools::bigint, ::tools::bigint> divmod_naive_u64(const ::tools::bigint& other) const {
      assert(!other.m_digits.empty());
      assert(::tools::bigint::compare_3way_abs(other, divmod_naive_u64_threshold()) <= 0);

      ::std::uint_fast64_t b = 0;
      for (::std::size_t i = other.m_digits.size(); i --> 0;) {
        b *= BASE;
        b += other.m_digits[i];
      }

      ::tools::bigint Q(*this);
      ::std::uint_fast64_t r = 0;
      for (::std::size_t i = Q.m_digits.size(); i--> 0;) {
        r *= BASE;
        r += Q.m_digits[i];
        Q.m_digits[i] = r / b;
        r %= b;
      }

      Q.m_positive = (this->m_positive == other.m_positive);
      Q.regularize<0>();
      ::tools::bigint R(r);
      R.m_positive = (r == 0 || this->m_positive);

      return ::std::make_pair(Q, R);
    }

    static const ::tools::bigint& divmod_naive_u128_threshold() {
      static const ::tools::bigint threshold("34028236692093846346337460743176820");
      return threshold;
    }

    ::std::pair<::tools::bigint, ::tools::bigint> divmod_naive_u128(const ::tools::bigint& other) const {
      assert(!other.m_digits.empty());
      assert(::tools::bigint::compare_3way_abs(other, divmod_naive_u128_threshold()) <= 0);

      ::tools::uint128_t b = 0;
      for (::std::size_t i = other.m_digits.size(); i --> 0;) {
        b *= BASE;
        b += other.m_digits[i];
      }

      ::tools::bigint Q(*this);
      ::tools::uint128_t r = 0;
      for (::std::size_t i = Q.m_digits.size(); i--> 0;) {
        r *= BASE;
        r += Q.m_digits[i];
        Q.m_digits[i] = r / b;
        r %= b;
      }

      Q.m_positive = (this->m_positive == other.m_positive);
      Q.regularize<0>();
      ::tools::bigint R(r);
      R.m_positive = (r == 0 || this->m_positive);

      return ::std::make_pair(Q, R);
    }

    // S1の[l1, r1)桁目 * (BASE ** n1) <=> S2の[l2, r2)桁目 * (BASE ** n2)
    static int compare_3way_abs(const ::tools::bigint& S1, ::std::size_t l1, ::std::size_t r1, ::std::size_t n1, const ::tools::bigint& S2, ::std::size_t l2, ::std::size_t r2, ::std::size_t n2) {
      assert(l1 <= r1);
      assert(l2 <= r2);

      ::tools::chmin(l1, S1.m_digits.size());
      ::tools::chmin(r1, S1.m_digits.size());
      ::tools::chmin(l2, S2.m_digits.size());
      ::tools::chmin(r2, S2.m_digits.size());
      const auto n_min = ::std::min(n1, n2);
      n1 -= n_min;
      n2 -= n_min;

      if (const auto comp = ::tools::bigint::compare_3way(r1 - l1 + n1, r2 - l2 + n2); comp != 0) {
        return comp;
      }
      if (n1 > 0) {
        const auto m2 = r2 - (r1 - l1);
        for (::std::size_t i1 = r1, i2 = r2; --i1, i2 --> m2;) {
          if (const auto comp = ::tools::bigint::compare_3way(S1.m_digits[i1], S2.m_digits[i2]); comp != 0) {
            return comp;
          }
        }
        for (::std::size_t i2 = m2; i2 --> l2;) {
          if (0 < S2.m_digits[i2]) {
            return -1;
          }
        }
      } else if (n2 > 0) {
        const auto m1 = r1 - (r2 - l2);
        for (::std::size_t i1 = r1, i2 = r2; --i1, i2 --> l2;) {
          if (const auto comp = ::tools::bigint::compare_3way(S1.m_digits[i1], S2.m_digits[i2]); comp != 0) {
            return comp;
          }
        }
        for (::std::size_t i1 = m1; i1 --> l1;) {
          if (S1.m_digits[i1] > 0) {
            return 1;
          }
        }
      } else {
        for (::std::size_t i1 = r1, i2 = r2; --i1, i2 --> l2;) {
          if (const auto comp = ::tools::bigint::compare_3way(S1.m_digits[i1], S2.m_digits[i2]); comp != 0) {
            return comp;
          }
        }
      }
      return 0;
    }
    // *thisの[l, r)桁目
    ::tools::bigint slice(::std::size_t l, ::std::size_t r) const {
      assert(this->m_positive);
      assert(l <= r);

      ::tools::chmin(l, this->m_digits.size());
      ::tools::chmin(r, this->m_digits.size());

      ::tools::bigint S;
      S.m_digits.reserve(r - l);
      ::std::copy(this->m_digits.begin() + l, this->m_digits.begin() + r, ::std::back_inserter(S.m_digits));
      return S.regularize<0>();
    }
    // *this * (BASE ** n)
    ::tools::bigint lshift(const int n) const {
      assert(this->m_positive);

      if (n == 0) return *this;
      if (this->m_digits.empty()) return *this;

      ::tools::bigint S;
      S.m_digits.reserve(n + this->m_digits.size());
      ::std::fill_n(::std::back_inserter(S.m_digits), n, 0);
      ::std::copy(this->m_digits.begin(), this->m_digits.end(), ::std::back_inserter(S.m_digits));
      return S;
    }
    // *this / (BASE ** n)
    ::tools::bigint rshift(const ::std::size_t n) const {
      assert(this->m_positive);

      if (this->m_digits.size() <= n) return ::tools::bigint{};

      ::tools::bigint S;
      S.m_digits.reserve(this->m_digits.size() - n);
      ::std::copy(this->m_digits.begin() + n, this->m_digits.end(), ::std::back_inserter(S.m_digits));
      return S;
    }
    // *this * (BASE ** (r - l)) + otherの[l, r)桁目
    ::tools::bigint concat(const ::tools::bigint& other, ::std::size_t l, ::std::size_t r) const {
      assert(this->m_positive);
      assert(other.m_positive);
      assert(l < r);

      if (this->m_digits.empty()) return other.slice(l, r);

      const auto n = r - l;
      ::tools::chmin(l, other.m_digits.size());
      ::tools::chmin(r, other.m_digits.size());

      ::tools::bigint S;
      S.m_digits.reserve(this->m_digits.size() + n);
      ::std::copy(other.m_digits.begin() + l, other.m_digits.begin() + r, ::std::back_inserter(S.m_digits));
      ::std::fill_n(::std::back_inserter(S.m_digits), n - (r - l), 0);
      ::std::copy(this->m_digits.begin(), this->m_digits.end(), ::std::back_inserter(S.m_digits));
      return S;
    }

    ::std::pair<::tools::bigint, ::tools::bigint> divmod_3n_2n(const ::tools::bigint& other, const ::std::size_t n) const {
      assert(this->m_positive);
      assert(this->m_digits.size() <= n * 3);
      assert(other.m_positive);
      assert(other.m_digits.size() == n * 2);
      assert(BASE <= other.m_digits.back() * 2);
      assert(compare_3way_abs(*this, 0, n * 3, 0, other, 0, n * 2, n) < 0);

      ::tools::bigint Q_hat, S, D;
      if (compare_3way_abs(*this, n * 2, n * 3, 0, other, n, n * 2, 0) < 0) {
        ::std::tie(Q_hat, S) = this->slice(n, n * 3).divmod_2n_n(other.slice(n, n * 2), n);
        D = other.slice(0, n);
        D *= Q_hat;
      } else {
        Q_hat.m_digits.assign(n, BASE - 1);
        S = this->slice(n, n * 3);
        S += other.slice(n, n * 2);
        S -= other.slice(n, n * 2).lshift(n);
        D = other.slice(0, n).lshift(n);
        D -= other.slice(0, n);
      }

      auto R_hat = S.concat(*this, 0, n);
      R_hat -= D;
      while (!R_hat.m_positive) {
        R_hat += other;
        --Q_hat;
      }

      return ::std::make_pair(Q_hat, R_hat);
    }

    ::std::pair<::tools::bigint, ::tools::bigint> divmod_4n_2n(const ::tools::bigint& other, const ::std::size_t n) const {
      assert(this->m_positive);
      assert(this->m_digits.size() <= n * 4);
      assert(other.m_positive);
      assert(other.m_digits.size() == n * 2);
      assert(BASE <= other.m_digits.back() * 2);
      assert(compare_3way_abs(*this, 0, n * 4, 0, other, 0, n * 2, n * 2) < 0);

      const auto [Q1, S] = this->slice(n, n * 4).divmod_3n_2n(other, n);
      const auto [Q0, R] = S.concat(*this, 0, n).divmod_3n_2n(other, n);

      return ::std::make_pair(Q1.concat(Q0, 0, n), R);
    }

    ::std::pair<::tools::bigint, ::tools::bigint> divmod_2n_n(const ::tools::bigint& other, const ::std::size_t n) const {
      assert(this->m_positive);
      assert(this->m_digits.size() <= n * 2);
      assert(other.m_positive);
      assert(other.m_digits.size() == n);
      assert(BASE <= other.m_digits.back() * 2);

      if (other.m_digits.size() <= 3) {
        return this->divmod_naive_u64(other);
      }
      if (other.m_digits.size() <= 8) {
        return this->divmod_naive_u128(other);
      }

      assert(n % 2 == 0);
      return this->divmod_4n_2n(other, n / 2);
    }

  public:
    ::std::pair<::tools::bigint, ::tools::bigint> divmod(const ::tools::bigint& other) const {
      assert(!other.m_digits.empty());

      if (::tools::bigint::compare_3way_abs(*this, other) < 0) {
        return ::std::make_pair(::tools::bigint{}, *this);
      }
      if (::tools::bigint::compare_3way_abs(other, divmod_naive_u64_threshold()) <= 0) {
        return this->divmod_naive_u64(other);
      }
      if (::tools::bigint::compare_3way_abs(other, divmod_naive_u128_threshold()) <= 0) {
        return this->divmod_naive_u128(other);
      }

      if (!this->m_positive || !other.m_positive) {
        auto [Q, R] = ::tools::abs(*this).divmod(::tools::abs(other));
        Q.m_positive = Q.m_digits.empty() || (this->m_positive == other.m_positive);
        R.m_positive = R.m_digits.empty() || this->m_positive;
        return ::std::make_pair(Q, R);
      }

      const ::std::size_t DIV_LIMIT = 8;
      const auto s = other.m_digits.size();
      const auto m = ::tools::pow2(::tools::floor_log2(s / DIV_LIMIT) + 1);
      const auto n = ::tools::ceil(s, m) * m;

      const auto sigma1 = n - s;
      auto sigma2 = ::tools::pow2(::tools::floor_log2(BASE / (other.m_digits.back() + 1)));

      auto B = other.lshift(sigma1);
      for (auto& B_i : B.m_digits) B_i *= sigma2;
      B.regularize<2>();
      assert(B.m_digits.size() == n);
      while (B.m_digits.back() * 2 < BASE) {
        sigma2 *= 2;
        B += B;
        assert(B.m_digits.size() == n);
      }

      auto A = this->lshift(sigma1);
      for (auto& A_i : A.m_digits) A_i *= sigma2;
      A.regularize<2>();

      const auto t = ::std::max<::std::size_t>(2, ::tools::ceil(A.m_digits.size() + 1, n));
      ::tools::bigint Q, Q_i, R_i;
      Q.m_digits.resize(n * (t - 1));
      auto Z = A.slice(n * (t - 2), n * t);
      ::std::tie(Q_i, R_i) = Z.divmod_2n_n(B, n);
      ::std::copy(Q_i.m_digits.begin(), Q_i.m_digits.end(), Q.m_digits.begin() + n * (t - 2));
      for (::std::size_t i = t - 2; i --> 0;) {
        Z = R_i.concat(A, n * i, n * (i + 1));
        ::std::tie(Q_i, R_i) = Z.divmod_2n_n(B, n);
        ::std::copy(Q_i.m_digits.begin(), Q_i.m_digits.end(), Q.m_digits.begin() + n * i);
      }

      return ::std::make_pair(Q.regularize<0>(), R_i.divmod_naive_u64(::tools::bigint(sigma2)).first.rshift(sigma1));
    }

    ::tools::bigint& operator/=(const ::tools::bigint& other) {
      return *this = *this / other;
    }
    friend ::tools::bigint operator/(const ::tools::bigint& lhs, const ::tools::bigint& rhs) {
      return lhs.divmod(rhs).first;
    }
    ::tools::bigint& operator%=(const ::tools::bigint& other) {
      return *this = *this % other;
    }
    friend ::tools::bigint operator%(const ::tools::bigint& lhs, const ::tools::bigint& rhs) {
      return lhs.divmod(rhs).second;
    }

    template <typename T, ::std::enable_if_t<::std::is_integral_v<T>, ::std::nullptr_t> = nullptr>
    explicit operator T() const {
      assert(::tools::bigint(::std::numeric_limits<T>::min()) <= *this && *this <= ::tools::bigint(::std::numeric_limits<T>::max()));
      T result = 0;
      for (::std::size_t i = this->m_digits.size(); i --> 0;) {
        result = result * BASE + this->m_digits[i] * (this->m_positive ? 1 : -1);
      }
      return result;
    }

    explicit operator bool() const {
      return !this->m_digits.empty();
    }

    explicit operator ::tools::int128_t() const {
      assert(::tools::bigint(::std::numeric_limits<::tools::int128_t>::min()) <= *this && *this <= ::tools::bigint(::std::numeric_limits<::tools::int128_t>::max()));
      ::tools::int128_t result = 0;
      for (::std::size_t i = this->m_digits.size(); i --> 0;) {
        result = result * BASE + this->m_digits[i] * (this->m_positive ? 1 : -1);
      }
      return result;
    }

    explicit operator ::tools::uint128_t() const {
      assert(::tools::bigint(0) <= *this && *this <= ::tools::bigint(::std::numeric_limits<::tools::uint128_t>::max()));
      ::tools::uint128_t result = 0;
      for (::std::size_t i = this->m_digits.size(); i --> 0;) {
        result = result * BASE + this->m_digits[i];
      }
      return result;
    }

    explicit operator double() const {
      long double result = 0.0;
      const ::std::size_t precision = this->size();
      for (::std::size_t i = 0; i < ::std::numeric_limits<long double>::digits10; ++i) {
        result = result * 10.0L + (precision >= i + 1 ? (*this)[precision - 1 - i] : 0) * this->signum();
      }
      result *= ::std::pow(10.0L, static_cast<long double>(precision) - static_cast<long double>(::std::numeric_limits<long double>::digits10));
      return static_cast<double>(result);
    }

    friend ::std::istream& operator>>(::std::istream& is, ::tools::bigint& self) {
      ::std::string s;
      is >> s;
      self = ::tools::bigint(s);
      return is;
    }
    friend ::std::ostream& operator<<(::std::ostream& os, const ::tools::bigint& self) {
      if (!self.m_positive) {
        os << '-';
      }
      if (self.m_digits.empty()) {
        return os << '0';
      }
      os << self.m_digits.back();
      for (::std::size_t i = 1; i < self.m_digits.size(); ++i) {
        os << ::std::setw(LOG10_BASE) << ::std::setfill('0') << self.m_digits[self.m_digits.size() - 1 - i];
      }
      return os;
    }

    friend ::tools::bigint abs(::tools::bigint x);
  };

  inline ::tools::bigint abs(::tools::bigint x) {
    if (!x.m_positive) x.negate();
    return x;
  }

  template <>
  ::tools::bigint gcd<::tools::bigint, ::tools::bigint>(::tools::bigint x, ::tools::bigint y) {
    if (x.signum() < 0) x.negate();
    if (y.signum() < 0) y.negate();

    while (y.signum() != 0) {
      x %= y;
      ::std::swap(x, y);
    }

    return x;
  }
}


#line 1 "tools/signum.hpp"



#line 5 "tools/signum.hpp"

namespace tools {

  template <typename T>
  constexpr int signum(const T x) noexcept {
    if constexpr (::tools::is_unsigned_v<T>) {
      return T(0) < x;
    } else {
      return (T(0) < x) - (x < T(0));
    }
  }
}


#line 1 "tools/rounding_mode.hpp"



namespace tools {
  enum class rounding_mode {
    ceiling,
    down,
    floor,
    half_down,
    half_even,
    half_up,
    up
  };
}


#line 17 "tools/bigdecimal.hpp"

namespace tools {
  class bigdecimal {
  private:
    // *this := this->m_unscaled_value * (10 ** -this->m_scale)
    ::tools::bigint m_unscaled_value;
    ::std::ptrdiff_t m_scale;

  public:
    const ::tools::bigint& unscaled_value() const {
      return this->m_unscaled_value;
    }
    ::std::size_t precision() const {
      return this->m_unscaled_value.size();
    }
    ::std::ptrdiff_t scale() const {
      return this->m_scale;
    }
    int signum() const {
      return this->m_unscaled_value.signum();
    }
    ::tools::bigdecimal& negate() {
      this->m_unscaled_value.negate();
      return *this;
    }
    ::tools::bigdecimal& multiply_by_pow10(const ::std::ptrdiff_t n) {
      this->m_scale -= n;
      return *this;
    }
    ::tools::bigdecimal& divide_by_pow10(const ::std::ptrdiff_t n) {
      return this->multiply_by_pow10(-n);
    }
    ::tools::bigdecimal& set_scale(const ::std::ptrdiff_t s) {
      this->m_unscaled_value.multiply_by_pow10(s - this->m_scale);
      this->m_scale = s;
      return *this;
    }
    static int compare_3way(const ::tools::bigdecimal& x, const ::tools::bigdecimal& y) {
      if (const auto comp = ::tools::signum(x.m_unscaled_value.signum() - y.m_unscaled_value.signum()); comp != 0) {
        return comp;
      }
      return [&]() {
        ::tools::bigdecimal abs_x(x);
        if (abs_x.signum() < 0) abs_x.negate();
        abs_x.set_scale(::std::max(x.m_scale, y.m_scale));
        ::tools::bigdecimal abs_y(y);
        if (abs_y.signum() < 0) abs_y.negate();
        abs_y.set_scale(::std::max(x.m_scale, y.m_scale));
        return ::tools::bigint::compare_3way(abs_x.m_unscaled_value, abs_y.m_unscaled_value);
      }() * x.m_unscaled_value.signum();
    }

    bigdecimal() : m_unscaled_value(0), m_scale(0) {
    }
    bigdecimal(const ::tools::bigdecimal&) = default;
    bigdecimal(::tools::bigdecimal&&) = default;
    ~bigdecimal() = default;
    ::tools::bigdecimal& operator=(const ::tools::bigdecimal&) = default;
    ::tools::bigdecimal& operator=(::tools::bigdecimal&&) = default;

    explicit bigdecimal(const long long n) : m_unscaled_value(n), m_scale(0) {
    }
    explicit bigdecimal(const ::tools::bigint& n) : m_unscaled_value(n), m_scale(0) {
    }
    explicit bigdecimal(::std::string s) {
      if (const auto pos = s.find('.'); pos != ::std::string::npos) {
        this->m_scale = s.size() - pos - 1;
        s.erase(pos, 1);
      } else {
        this->m_scale = 0;
      }
      this->m_unscaled_value = ::tools::bigint(s);
    }

    friend bool operator==(const ::tools::bigdecimal& lhs, const ::tools::bigdecimal& rhs) {
      return ::tools::bigdecimal::compare_3way(lhs, rhs) == 0;
    }
    friend bool operator!=(const ::tools::bigdecimal& lhs, const ::tools::bigdecimal& rhs) {
      return ::tools::bigdecimal::compare_3way(lhs, rhs) != 0;
    }
    friend bool operator<(const ::tools::bigdecimal& lhs, const ::tools::bigdecimal& rhs) {
      return ::tools::bigdecimal::compare_3way(lhs, rhs) < 0;
    }
    friend bool operator>(const ::tools::bigdecimal& lhs, const ::tools::bigdecimal& rhs) {
      return ::tools::bigdecimal::compare_3way(lhs, rhs) > 0;
    }
    friend bool operator<=(const ::tools::bigdecimal& lhs, const ::tools::bigdecimal& rhs) {
      return ::tools::bigdecimal::compare_3way(lhs, rhs) <= 0;
    }
    friend bool operator>=(const ::tools::bigdecimal& lhs, const ::tools::bigdecimal& rhs) {
      return ::tools::bigdecimal::compare_3way(lhs, rhs) >= 0;
    }

    ::tools::bigdecimal operator+() const {
      return *this;
    }
    ::tools::bigdecimal operator-() const {
      return ::tools::bigdecimal(*this).negate();
    }

    ::tools::bigdecimal& operator+=(::tools::bigdecimal other) {
      const ::std::size_t scale = ::std::max(this->m_scale, other.m_scale);
      this->set_scale(scale);
      other.set_scale(scale);
      this->m_unscaled_value += other.m_unscaled_value;
      return *this;
    }
    ::tools::bigdecimal& operator-=(::tools::bigdecimal other) {
      const ::std::size_t scale = ::std::max(this->m_scale, other.m_scale);
      this->set_scale(scale);
      other.set_scale(scale);
      this->m_unscaled_value -= other.m_unscaled_value;
      return *this;
    }
    ::tools::bigdecimal& operator*=(const ::tools::bigdecimal& other) {
      this->m_unscaled_value *= other.m_unscaled_value;
      this->m_scale += other.m_scale;
      return *this;
    }
    ::tools::bigdecimal& divide(const ::tools::bigdecimal& other, const ::std::ptrdiff_t scale, const ::tools::rounding_mode rounding_mode) {
      assert(other.signum() != 0);

      static const auto compare_3way_abs = [](::tools::bigdecimal& x, ::tools::bigdecimal& y) {
        const bool x_positive = x.signum() >= 0;
        const bool y_positive = y.signum() >= 0;
        if (!x_positive) x.negate();
        if (!y_positive) y.negate();
        const int result = ::tools::bigdecimal::compare_3way(x, y);
        if (!x_positive) x.negate();
        if (!y_positive) y.negate();
        return result;
      };

      ::tools::bigdecimal old_this(*this);

      this->m_unscaled_value.multiply_by_pow10(scale - (this->m_scale - other.m_scale));
      this->m_unscaled_value /= other.m_unscaled_value;
      this->m_scale = scale;

      if ([&]() {
        if (rounding_mode == ::tools::rounding_mode::down) {
          return false;
        }
        if (rounding_mode == ::tools::rounding_mode::ceiling || rounding_mode == ::tools::rounding_mode::floor || rounding_mode == ::tools::rounding_mode::up) {
          if ((rounding_mode == ::tools::rounding_mode::ceiling && old_this.signum() * other.signum() > 0)
            || (rounding_mode == ::tools::rounding_mode::floor && old_this.signum() * other.signum() < 0)
            || rounding_mode == ::tools::rounding_mode::up) {
            ::tools::bigdecimal d(*this);
            d *= other;
            return compare_3way_abs(old_this, d) > 0;
          } else {
            return false;
          }
        }

        ::tools::bigdecimal d(*this);
        d += ::tools::bigdecimal(5 * old_this.signum() * other.signum()).divide_by_pow10(scale + 1);
        d *= other;
        const int comp = compare_3way_abs(old_this, d);
        if (rounding_mode == ::tools::rounding_mode::half_down) {
          return comp > 0;
        }
        if (rounding_mode == ::tools::rounding_mode::half_up) {
          return comp >= 0;
        }
        return comp > 0 || (comp == 0 && this->m_unscaled_value[0] % 2 != 0);
      }()) {
        this->m_scale = scale;
        this->m_unscaled_value += ::tools::bigint(old_this.signum() * other.signum());
      }

      return *this;
    }
    ::tools::bigdecimal& divide(const ::tools::bigdecimal& other, const ::std::ptrdiff_t scale) {
      return this->divide(other, scale, ::tools::rounding_mode::half_even);
    }
    ::tools::bigdecimal& operator/=(const ::tools::bigdecimal& other) {
      return this->divide(other, this->m_scale - other.m_scale);
    }

    friend ::tools::bigdecimal operator+(const ::tools::bigdecimal& lhs, const ::tools::bigdecimal& rhs) {
      return ::tools::bigdecimal(lhs) += rhs;
    }
    friend ::tools::bigdecimal operator-(const ::tools::bigdecimal& lhs, const ::tools::bigdecimal& rhs) {
      return ::tools::bigdecimal(lhs) -= rhs;
    }
    friend ::tools::bigdecimal operator*(const ::tools::bigdecimal& lhs, const ::tools::bigdecimal& rhs) {
      return ::tools::bigdecimal(lhs) *= rhs;
    }
    ::tools::bigdecimal divide_and_copy(const ::tools::bigdecimal& other, const ::std::ptrdiff_t scale, const ::tools::rounding_mode rounding_mode) const {
      return ::tools::bigdecimal(*this).divide(other, scale, rounding_mode);
    }
    ::tools::bigdecimal divide_and_copy(const ::tools::bigdecimal& other, const ::std::ptrdiff_t scale) const {
      return ::tools::bigdecimal(*this).divide(other, scale);
    }
    friend ::tools::bigdecimal operator/(const ::tools::bigdecimal& lhs, const ::tools::bigdecimal& rhs) {
      return ::tools::bigdecimal(lhs) /= rhs;
    }

    template <typename T, ::std::enable_if_t<::std::is_integral_v<T>, ::std::nullptr_t> = nullptr>
    explicit operator T() const {
      auto x = *this;
      x.set_scale(0);
      return static_cast<T>(x.m_unscaled_value);
    }

    explicit operator double() const {
      long double result = 0.0;
      const ::std::size_t precision = this->precision();
      for (::std::size_t i = 0; i < ::std::numeric_limits<long double>::digits10; ++i) {
        result = result * 10.0L + (precision >= i + 1 ? this->m_unscaled_value[precision - 1 - i] : 0) * this->signum();
      }
      result *= ::std::pow(10.0L, static_cast<long double>(precision) - static_cast<long double>(this->m_scale) - static_cast<long double>(::std::numeric_limits<long double>::digits10));
      return static_cast<double>(result);
    }

    friend ::std::istream& operator>>(::std::istream& is, ::tools::bigdecimal& self) {
      ::std::string s;
      is >> s;
      self = ::tools::bigdecimal(s);
      return is;
    }
    friend ::std::ostream& operator<<(::std::ostream& os, const ::tools::bigdecimal& self) {
      if (self.signum() == 0 && self.m_scale <= 0) {
        return os << '0';
      }

      if (self.signum() < 0) {
        os << '-';
      }
      for (auto i = ::std::max(::std::ssize(self.m_unscaled_value) - 1, self.m_scale); i >= ::std::min<::std::ptrdiff_t>(0, self.m_scale); --i) {
        if (i == self.m_scale - 1) {
          os << '.';
        }
        os << (0 <= i && i < ::std::ssize(self.m_unscaled_value) ? self.m_unscaled_value[i] : 0);
      }
      return os;
    }
  };

  inline ::tools::bigdecimal abs(::tools::bigdecimal x) {
    if (x.signum() < 0) x.negate();
    return x;
  }
}


#line 6 "tests/bigdecimal/hand.test.cpp"

int main() {
  std::cin.tie(nullptr);
  std::ios_base::sync_with_stdio(false);

  assert_that(::tools::bigdecimal("0.003").divide_and_copy(::tools::bigdecimal("20"), 4, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("0.0002"));
  assert_that(::tools::bigdecimal("0.03").divide_and_copy(::tools::bigdecimal("20"), 3, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("0.002"));
  assert_that(::tools::bigdecimal("0.3").divide_and_copy(::tools::bigdecimal("20"), 2, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("0.02"));
  assert_that(::tools::bigdecimal("3").divide_and_copy(::tools::bigdecimal("20"), 1, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("0.2"));
  assert_that(::tools::bigdecimal("30").divide_and_copy(::tools::bigdecimal("20"), 0, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("2"));
  assert_that(::tools::bigdecimal("300").divide_and_copy(::tools::bigdecimal("20"), -1, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("20"));
  assert_that(::tools::bigdecimal("3000").divide_and_copy(::tools::bigdecimal("20"), -2, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("200"));
  assert_that(::tools::bigdecimal("0.001").divide_and_copy(::tools::bigdecimal("4"), 4, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("0.0002"));
  assert_that(::tools::bigdecimal("0.01").divide_and_copy(::tools::bigdecimal("4"), 3, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("0.002"));
  assert_that(::tools::bigdecimal("0.1").divide_and_copy(::tools::bigdecimal("4"), 2, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("0.02"));
  assert_that(::tools::bigdecimal("1").divide_and_copy(::tools::bigdecimal("4"), 1, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("0.2"));
  assert_that(::tools::bigdecimal("10").divide_and_copy(::tools::bigdecimal("4"), 0, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("2"));
  assert_that(::tools::bigdecimal("100").divide_and_copy(::tools::bigdecimal("4"), -1, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("20"));
  assert_that(::tools::bigdecimal("1000").divide_and_copy(::tools::bigdecimal("4"), -2, ::tools::rounding_mode::half_even) == ::tools::bigdecimal("200"));

  return 0;
}
Back to top page